Zeus Technology Limited (UK)
The Jeffreys Building

Cowley Road

Cambridge CB4 OWS

United Kingdom

Zeus TrafficScript Overview and Reference

WA

Sales:
Main:
Fax:
Email:
Web:

+44 (0)1223 568555
+44 (0)1223 525000
+44 (0)1223 525100
info@zeus.com
WWW.zeus.com

Zeus Technology, Inc. (U.S.)

1875 South Grant Street - Suite 720
San Mateo

CA 94402

United States of America

Phone: 1-888-ZEUS-INC
Fax: (866) 628-7884
Email: info@zeus.com
Web: www.zeus.com

Copyright Notice

© Zeus Technology Limited 2010. All rights reserved. Zeus, Zeus Technology, the Zeus logo, Zeus
Web Server, TrafficScript, Zeus Traffic Manager, Zeus Elastic Application Delivery platform and
Zeus Multi-Site Manager are trademarks of Zeus Technology. All other brands and product names
may be trademarks or registered trademarks of their respective owners.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 2 OF 275

() ZeUs

—— — e
- — —
Table of Contents

0 1o T LT T ot oo o e 14
1.1 Introducing Zeus Traffic Managercoveieieiiiiiii e 14
1.2 The TrafficScript 1anguageoeieiiiiii e 14
1.2.1 TrafficScript EXamples ... 16
1.3 Application Of RUIESeeii e 18
1.4 Using a TrafficScript RUIEoeiee e e 18
1.4.1 Create a Rule in the Catalog........cccviiiiiiiiii 19
1.4.2 Configure a Virtual ServertoUse aRulecccovieiiiiiniinnnnen. 20
TrafficScript SYyNtax ...ciciiiiararaiiii s r s na s s s s mna s s nmnmnananas 22
2.1 StatEMENTS . v 22
2.2 CONSEANTS Lt 22
2.3 Variables ... 23
2.4 0] f=T1] (0] o [PP 23
2.4.1 (O] 01T =1 o] o= T PPN 24
2.4.2 Type Casts in TrafficScript ..ocooviiiiii 27
2.5 (@00} o T 1l o = | = 28
2.6 oo o 1= PP 29
2.6.1 B 0] il (oY o 1= PPN 29
2.6.2 CWHIlE JOOPS e 29
2.6.3 Ao [0 M T Yo o 1PN 30
2.7 Other flIoW CONLIOl e e e eeens 30
2.8 CoMPIEX DAta TYPES «.uitiiieiii it e e e aenaas 31
2.8.1 1= 1/ 31
2.8.2 HaShes ..o 32
2.8.3 The global associative arrayc.cooeviiiiiiiiiees 32
2.8.4 The connection-local arraycoovieiiiiiiii s 33
2.8.5] = 1= PPN 34
2.9 FUNCEIONS .t e 35
2.10 Escaping Regular EXPressionsccoviiieiiieiiiiiiiiiiiniiene e eee e 36
2.11 Creating new subroutines in TrafficScript.........cccoviiiiiiiiii 37
2.11.1 SYNTAX 1ttt e 37
2.12 Request and RESPONSE FUIESiuviriiiiiiii e e ee e 38
2.12.1 Processing multiple requests and responses.............ccceevvnennnn 38
2.12.2 Specialized protocol handing functionsc.ccoiiiiiiiennnnn. 39
2.12.3 Processing other protocolsccociiiiiiiiiiii e 39
2.13 The state machine in detail ..o 40
2.13.1 Controlling the state machine..........cccoiiiiiie 40
Sample TrafficScript Rulescccciiiiiiiiiiiiiiirs s s s s nns 42
3.1 Routing by Content TYPE ..o e 42
3.2 Restricting Access Based on the Time of Day......cccoveiiiiiiiiiiiininienes 42
3.3 Customer Prioritizationoovviiiiiii 43
3.4 Routing Based on XML TraffiC......ccoiviiiiiiiii e 44
3.4.1 Example: Google Search Requestc.covvviviiiiiiiiiiiiiienens 44
3.5 Authenticating USer ACCESSvviiiiiiiiiiiii i raeaens 46

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 3 OF 275

() ZeUs

= —— —_— - e ———

3.6 Synchronizing requests and reSPONSESc.vviiiiiiiiiiiii i aeens 47
3.7 Streaming HTTP reSPONSES .uiiiiiiiiiti it it ae e e s e rneraneenes 49
3.8 Managing FTP CONNECLIONSviiiiiiiiii i aaneaas 50
Troubleshootingciiciiciiiiii i s s s s s s s s r s s s s s nrasnansnnnnnnnnnn 53
4.1 (@ 7= Y= P 53
4.2 Checking SYNEaX...oiiiiiiii s 53
4.3 Debugging RUIEScviiii e 53
4.4 Request and ReSPONSE FUIESiiiiiiiiiiiiii e 54
4.5 Special note about pool.use and pool.selectc.ccviviiiiiiiiiiiiiiens 55
LT T 3 Tt oY 4 T 2= =T =T o Lol = 57
5.1 TrafficScript Core FUNCHIONS ..o e 57
5.1.1 array.append(arrayl, @rray2)ueieiiciiiiiiiiiiiei e, 58

5.1.2 array.contains(array, value)....cocoiiiiiiiiiiiiiii 58

5.1.3 ArrayY.COPY(@ITAY) tueiriiniiitiitiitiitiae ittt eateateaaeate e aeaaeanes 59

5.1.4 array.create(size, [default]) ..cooviiiiiiiiiiiii 59

5.1.5 array.filter(array, pattern, [flags]) ..cocovvviiiiiiiiiiiiii e 60

5.1.6 array.join(array, [separator])..cooviiiiiiiiiiiii 60

5.1.7 array.length(array) .oooooviiiii 61

5.1.8 =Yg =)V o Te] o] (=T o =1 V200 P 61

5.1.9 array.push(array, value)......ccoiiiiiiiiiii e 62

5.1.10 array.resize(array, size, [default]) ...ccovviviiiiiiiiiiiiiiic 62

5.1.11 array.reverse(@rray) cuieeeeeeieerueserniaernererinesenesntaereaeinrnnsnss 63

5.1.12 array.shift(@rray) ..oeoooiii e 63

5.1.13 array.sort(array, [Feverse]).ucioiiiiiiiiiiiiii e 64

5.1.14 array.sortNumerical(array, [reverse])....cccoiiiiiiiiiiiiinennnns, 64

5.1.15 array.splice(array, offset, length, [values])ccceeenenene. 65

5.1.16 array.unshift(array, value)......ccooiiiiiii 65

5.1.17 hash.contains(hash, K€y)....ccooiiiiiiiiiiiii e 66

5.1.18 hash.count(hash).....ccoiiiiiiiii 66

5.1.19 hash.delete(hash)....ccoiiiiiiiii e 67

5.1.20 hash.empty(hash) ..o 67

5.1.21 hash.keys(hash) ... 68

5.1.22 hash.values(hash) ..o 68

5.1.23 json.deserialize(JSON_StrNG) iovvviiiiiiiiiiiiiiii i e 69

5.1.24 json.serialize(object)...ceviiiiiii 69

5.1.25 lang.assert(condition, MeSSage)cccvvevviiiiriieiiiiinniieinnieanane, 70

5.1.26 1ang.chr(NUMDEr) .oiiriiiiii e 70

5.1.27 lang.dump(variable)....ccviiiiiii 70

5.1.28 lang.isarray(data) ..cooiiiiiiiiiii e 71

5.1.29 lang.ishash(data)......cccoiiiiiiiiiii e 71

5.1.30 lang.max(paraml, param2)ccceoiiiiiiiiiiiiei e 72

5.1.31 lang.min(paraml, param2) ...cccooeiiiiiiiiiiiieieeeeee e 72

5.1.32 1ang.ord(StriNG) .ouieieiiiii e 73

5.1.33 1ang.toArray(ValUES) ..ceeieieiiieiiiiiii e 73

5.1.34 lang.toDouble(value)......cocoiuiniiiiiii 73

5.1.35 lang.toHash(values) ...cccoiiiiiiiiiiiiii e 74

5.1.36 lang.tolnt(value) ...ociiiiiiii 74

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 4 OF 275

— —— — e e ——
5.1.37 1ang.toString(value) ..covviiiiiii 74
5.1.38 1ang.tochar() ..cceieiii i s 75
5.1.39 1ang.WwarN(MESSAGE) .iiutiriitiitiiniiteitiitiitiateateaneaerneaneeaeanes 75
5.1.40 mMaAth.@COS(X) teiiriiiiiiiiiiiiiiiie e it ae e e es 75
5.1.41 math.@Sin(X) cereiiiiiiiii i e 76
5.1.42 math.atan(angle). 76
5.1.43 math.ceil(value) ..o 76
5.1.44 math.cos(angle) ..o 77
5.1.45 math.eXp(POWEN) i 77
5.1.46 math.fabs(value) ..o 77
5.1.47 math.floor(value). 78
5.1.48 math.n(value) .o 78
5.1.49 math.log(value). 78
5.1.50 math.pow(NUM, POWELN) ..eiriiiiiiiiiiiii e 79
5.1.51 math.random(range)....cccoiiiiiiiiiiiiii 79
5.1.52 math.rint(value) ..o 79
5.1.53 math.sin(angle) ... 80
5.1.54 math.sgrt(NUM). 80
5.1.55 math.tan(angle) ..o 80
5.1.56 string.BERTOINt(StriNG)..oviuiieiniiiiiiiiii e 81
5.1.57 string.Ireplace(string, search, replacement) - deprecated 81
5.1.58 string.IreplaceAll(string, search, replacement) - deprecated.. 81
5.1.59 string.append(strl, str2, ...) oo 81
5.1.60 string.base64decode(String)...ccvoviiiriiiiiiiiiiiii e 82
5.1.61 string.base64encode(StriNg)...ccocviiiriiiiiiiiiiiiii e 82
5.1.62 string.bytesToDotted(String) ..c.cocvvviiiiiiiiiii e 83
5.1.63 string.bytesToInt(String)...cccviiiriiiiiiiiii e 83
5.1.64 string.cmp(Strl, str2).uceviiiiiii 84
5.1.65 string.contains(haystack, needle)ccoviviiiiiiiiiiiiii 84
5.1.66 string.containsI(haystack, needle)c.cocviiiiiiiiiiiiiiiinnnnn, 85
5.1.67 string.count(haystack, needle, [start])cocovvvviiiiiiiiniiinnnnnn 85
5.1.68 string.decrypt(string, passphrase)cccccovviiiiiiiiiiiiiiennnen 86
5.1.69 string.dottedToBytes(IP address)......ccoevviiiiiiiiiiiniiiiiiniennnen 86
5.1.70 string.drop(string, COUNT)..ivviiiiniiiiiii e 87
5.1.71 string.encrypt(string, passphrase)cccccevviiiiiiiiiiiiinnennnne, 87
5.1.72 string.endsWith(string, SUffiXx)ccoiviiiiiiiiii 88
5.1.73 string.endsWithI(string, suffix).....cccoceiiiiiiiiiiiiii e 88
5.1.74 string.escape(SEriNG) cuveiriiiiiiiiiiiiiii e 89
5.1.75 string.extractHost(string)....ccoovveiiiiiii 89
5.1.76 string.extractPort(string)ccvoviiiiiiii 90
5.1.77 string.find(haystack, needle, [start])...ccooovviiiiiiiiiiiiiiiiinnnns 90
5.1.78 string.findI(haystack, needle, [start])...cccovvviiiiiiiiiiiiiiinninnnns 91
5.1.79 string.findr(haystack, needle, [distanceFromEndToStart])..... 91
5.1.80 string.hash(String) ...ccoiiiiiiiiii e 92
5.1.81 string.hashMDS5(StriNg)..oeviieiiiiiiiiiiiir e 92
5.1.82 string.hashSHAL(String) «.ocvveiiiiiiiiiii e 92
5.1.83 string.hashSHA256(String).....ccvviiiiiiiiiiiii e 93
5.1.84 string.hashSHA384(String).....ccvviiiiiiiiiii e 93

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 5 OF 275

— I e ——— i
—_— —
5.1.85 string.hashSHAS12(String).ccovviiiiiiiiiiiiiiii e s 93
5.1.86 string.hexToInt(String) ..c.ccvvriiiiiiiiii e 94
5.1.87 string.hexdecode(encoded String)ccoveviviiiiiiiiiiiiiiiiiiaens 94
5.1.88 string.hexencode(String)...c.coviiiiiiiiiiiiiiicci e 94
5.1.89 string.htmldecode(encodedstring).....c.covvviiiiiiiiiiiiiiiiiinnnns 95
5.1.90 string.htmlencode(string) ..ccooviiiiiiii 95
5.1.91 string.icmp(strl, str2) .ccoiiiiiiiii 95
5.1.92 string.insertBytes(string, insertion, offset)cccoeviviiinnnnnn 96
5.1.93 string.intTOBER(numMber)cciiiiiiiiiiiieee 96
5.1.94 string.intToBytes(number, [width])c.cooiiiiiii 97
5.1.95 string.intTOHexX(String) c.ooviveiiiiiiiii e 97
5.1.96 string.ipmaskmatch(IP Address, CIDR IP Subnet) 98
5.1.97 string.left(string, count)cocoviriiiiii e 98
5.1.98 string.len(String) «.ocoieiiiiii 99
5.1.99 string.length(String) ...cccovviiiiii 99
5.1.100 string.lowercase(StriNg) ...ccovviiiiiiiiiiiiiirr e 99
5.1.101 string.normalizeIPAddress(string)cccovvveiiiiiiiiiiinninnnns 100
5.1.102 string.randomBytes(length)cocoiiiiiiiiiiiiis 100
5.1.103 string.regexescape(StriNg)coovveiiieiiiiiiiii e 101
5.1.104 string.regexmatch(string, regex, [flags]))...cocvevviniinnnens. 102
5.1.105 string.regexsub(string, regex, replacement, [flags])........... 103
5.1.106 string.replace(string, search, replacement)ocevvnens 104
5.1.107 string.replaceAll(string, search, replacement)............c..oueus 104
5.1.108 string.replaceAllI(string, search, replacement) 104
5.1.109 string.replaceBytes(string, replacement, offset)................. 105
5.1.110 string.replacel(string, search, replacement).............cevvvuens 105
5.1.111 string.reverse(StriNg) .oovviiiiiiiiiiii i reaens 106
5.1.112 string.right(string, count)coooviiiiiiii e 106
5.1.113 string.skip(string, COUNt) ...ooviiiiiiiiii s 106
5.1.114 string.split(string, [separator])ccccvieiiiiiiiiiiiiiiiiieens 107
5.1.115 string.sprintf(format string, arguments)cocovviivieinnnnns 107
5.1.116 string.startsWith(string, prefiX) ...cooeviiiiiiiiiiiiiees 108
5.1.117 string.startsWithI(string, prefiX) ..ccooviiiiiiiiiiiiieees 108
5.1.118 string.substring(string, base, end)cccoiiiiiiiiiii 108
5.1.119 string.trim(StriNg) .oviieiiiiii e 109
5.1.120 string.unescape(escaped String) ..c.ocviviiiiiiiiiiiiiiiiiieneienens 109
5.1.121 string.uppercase(StriNg) c.oovviiiiiiiiiiiiiii e 110
5.1.122 string.urlencode(String) ...cocvveiiiiiiiiiiiie e 110
5.1.123 string.validIPAddress(String) ...covovieiiiiiiiiiiiiiee e 111
5.1.124 string.wildmatch(string, pattern) ... 111
5.1.125 string.gmtime.parse(Str).iciiiiiiiiiii 112
5.1.126 sys.domainname() ..o.voeirieieieiii i 112
5.1.127 sys.getenv(variable) ...ccoiiiiiiii 112
5.1.128 SYS.GetPId() «ovvueirieiii i e 113
5.1.129 sys.hostname() «..ooeieiiiiiiiii 113
5.1.130 SYS.HME() tueiniiiiie i 113
5.1.131 sys.timeToString(unixtime)coviiiiiiiiiiie e 114
5.1.132 sys.gmtime.format(format, unixtime)........ccooiiiiiiiiiiinns 114

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 6 OF 275

5.1.133 sys.localtime.format(format, unixtime)...........cccvviiiinnnn. 115
5.1.134 sys.time.highres() ..ocoviiiiiiii e 116
5.1.135 sys.time.hour(unixtime) ..coooiiiiiiiii 117
5.1.136 sys.time.minutes(unixtime).....cocoiiiiiiiiiiiiiii 117
5.1.137 sys.time.month() ..coiiiiiii 118
5.1.138 sys.time.monthday(unixtime).....cccovviiiiiiiiiiiic e 118
5.1.139 sys.time.seconds(UNIXEIME)...ocviviiiiiiiiiiiiii e 119
5.1.140 sys.time.weekday(UniXtime)coovveiiiiiiiiiiiiies 119
5.1.141 sys.time.year(UnixXtime)....ccociiiiiiiiiiii s 120
5.1.142 sys.time.yearday(Unixtime)coooviiiiiiiiiiiie 120
5.2 Zeus Traffic Manager FUNCLIONSo.iiiiiiiii e 120
5.2.1 connection.checkLimits([poolname])ccoviviiiiiiiiiiiiinnnnss 122
5.2.2 connection.close(Data, [Read]) .covvvvvriiriiiiiiiiiiieiienneennns 123
5.2.3 connection.disCard().....ccoviieiiii i 123
5.2.4 connection.getBandwidthClass() - deprecated 123
5.2.5 connection.getData(count) - deprecated...............c.cccenene. 124
5.2.6 connection.getDatalen() - deprecated..............ccccvvvinininnnnn. 124
5.2.7 connection.getLine(offset) - deprecated..........c.c.covvvnnnnn.n. 124
5.2.8 connection.getLocallP() - deprecatedc.cocviiiiiiinnne. 124
5.2.9 connection.getLocalPort() - deprecated.............ccccvvviiininnnnn. 125
5.2.10 connection.getMemoryUsage()coovveriieinineiiiiiiiiieneienens 125
5.2.11 connection.getNOde()covviriiiiiiiiiiii s 125
5.2.12 connection.getPersistence() «.ovivvriiiieiiiiiiiiii e 126
5.2.13 connection.getPool() c.oviiieiiiiiiii i 126
5.2.14 connection.getRemotelP() - deprecated..............ccccevvvvinnnns 126
5.2.15 connection.getRemotePort() - deprecated..............cccevvvnunens 126
5.2.16 connection.getServiceLevelClass()cvvvvriiiieiiiiiiiiiiiiininnens 127
5.2.17 connection.getVirtualServer()......ccooviiiiiiiiiiiiiiinaeeens 127
5.2.18 connection.setBandwidthClass() - deprecated...................... 127
5.2.19 connection.setData(request data) - deprecated 128
5.2.20 connection.setldempotent(resend) - deprecated................ 128
5.2.21 connection.setPersistence(Name)...coccvviiiiiiiiiiiiiiiiiieieen 129
5.2.22 connection.setPersistenceKey(value)....ccccvviiiiiiiiiiiiiinnnnn. 129
5.2.23 connection.setPersistenceNode(value).......ccvvviiiiiiiinnnnnn. 130
5.2.24 connection.setServiceLevelClass()....c.ccoviviiiiiiiiiiiiiiieinnnnnn. 130
5.2.25 connection.sleep(milliseconds)ccoccviiiiiiiiiiiiiiiiiiiee 131
5.2.26 connection.data.get(Key) ..coooiiiiiiiiiiiiiiii 131
5.2.27 connection.data.set(key, value).....ccccoviiiiiiiiiiiiiiiiiiie 132
5.2.28 counter.increment(counter, [amount])ccooviiiiiiiiiiinns 132
5.2.29 data.get(KeY) .eiriiiiiii i 133
5.2.30 data.getMemoryFree()...ccooveiiiiii i 133
5.2.31 data.getMemorylUsage() «.ocvveeirineiniieiiiiei e 134
5.2.32 data.remove(Key). 134
5.2.33 data.reset([PrefiX]) ueviio i 135
5.2.34 data.set(key, value)....cociiiiiiiiii 136
5.2.35 event.emit(custom event name, message)........cccevvviinnnns 137
SI2NC TS T o 1=To W'e =1 o @1 Y/ (1 o 1 I PP 137
5.2.37 ge0.getCountry(IP) eeerriieieiiiiiiiii e 137

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 7 OF 275

— I e ——— i
—_— —
5.2.38 geo.getCountryCode(iP) «veveriiriiiiieiiiiieiieiieeieinerneaneaens 138
5.2.39 geo.getDistanceKM(latl, lonl, lat2, lon2) ...cccovviiiiiiiinnnen. 138
5.2.40 geo.getDistanceMiles(latl, lon1, lat2, lon2)......ccvveviinnnnen. 138
5.2.41 geo.getIPDistanceKM(ipl, iP2) cioiiiiiiiiiiiiiiiii i 139
5.2.42 geo.getIPDistanceMiles(ipl, iP2).iiiiiiiiiiiiiiiiiiiiiiieiaenen 139
5.2.43 geo.getlatitude(iP) civviriiiiiiiiii i 139
5.2.44 ge0.getLocation() ...ocvveiiiiiiiiiiii 140
5.2.45 geo.getLocationLonLat()oovveviiiiiiiiiiiii s 141
5.2.46 geo.getLongitude(iP) .cieeeeriieiiiiiii i 141
5.2.47 ge0.getRegioN(iP) cieveiriiiiniiiiiiiii s 142
5.2.48 ge0.getRegionCode(QP) .iverrreriniiiiiiiiiiii i 142
5.2.49 http.addHeader(name, value)......cooviiiiiiiiiiiiiiiees 142
5.2.50 http.addResponseHeader(name, value)cccoevvieiivvnnnnnn. 143
5.2.51 http.changeSite() ..cooviiiiiiii 143
5.2.52 http.cookie(name) - deprecatedc.coeiiiiiiiiiiiiiiiiienns 144
5.2.53 http.doesFormParamExist(Parameter)cccovviiiiiiinnens 144
5.2.54 http.getBody([COUNE]) cuieiniiiiii s 145
5.2.55 http.getBodyLines([cOUNt]) .ccoviiniiiiiiiiii e 146
5.2.56 http.getCookie(NamMe) ...ceiiiiiiiiiiiiii e 147
5.2.57 http.getCooKIieS()..ociuieiiiiiiii i 147
5.2.58 http.getFormParam(Parameter, [Separator])........c...cevvnens 148
5.2.59 http.getFormParamNames(Separator) - deprecated 148
5.2.60 http.getFormParams() ...ccoviieiiiiiiiiiiiei i e 149
5.2.61 http.getHeader(Name)...ccviiiiiiiiiiiiiii e 149
5.2.62 http.getHeaderNames() - deprecatedcccoevviiiininnnnns 150
5.2.63 http.getHeaders()cvviiiiiiiiiiii e 150
5.2.64 http.getHostHeader()cooviiiiiiiiii e 150
5.2.65 http.getMethod() ..ocivvieiiiiii 151
5.2.66 http.getMultipartAttachment(part)coovviiiiiiiiiiiiieens 151
5.2.67 http.getPath() .ccovieiiiiii e 152
5.2.68 http.getQuUeryString()...ooveeiiieiiiiii i 152
5.2.69 http.getRawQuUeryString()...ccovivieiiieiiiiien i reneeeieeeenens 153
5.2.70 http.getRaWURL() «.eiviiiiiiii s 154
5.2.71 http.getReQUEST() «vivieiiiiiiii i 155
5.2.72 http.getRESPONSE() v ivvuririiiiiii i e e raanens 155
5.2.73 http.getResponseBody([COUNt]) .iviieiiiiiiiiiiiiiiiene e 156
5.2.74 http.getResponseBodyLines([COUNt])..covvvviririiiiniienniieinnnens 156
5.2.75 http.getResponseCode() cuuvvriieiriieiiieiiiiieie e reneaanenaanens 157
5.2.76 http.getResponseCookie(Name) ...cceviiiiiiiiiiniiieiiiiniienneennns 157
5.2.77 http.getResponseCooKIeS() ...ovvrvreiniieiiiiiiii e 158
5.2.78 http.getResponseHeader(Name)coccvvvviiiiiiiiiiiieiienieennss 158
5.2.79 http.getResponseHeaderNames() - deprecated.................... 159
5.2.80 http.getResponseHeaders()......ccvviviiiiiiiiiiiiiiiiieieeneeeen 159
5.2.81 http.getResponseVersion()....ocvivviiiiiiiiiiieinieieeeieraenens 159
5.2.82 http.getVersion() coovoii i 160
5.2.83 http.headerEXists(Name) .ooveiiiiiiiiii e 160
5.2.84 http.listFormParamNames()ccvviiieiiiiiiiii e 161
5.2.85 http.listHeaderNames()cocoveiiiiiiiiiiiii s 161

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 8 OF 275

—— — —— — e e —
— —— e _— - — i — — —
e ——— — = — .
— = — ——
— B— e ——

5.2.86 http.listResponseHeaderNames()coocvvvviiiiiiiiiiiiiniiennnnnnn, 162
5.2.87 http.normalizePath(url) .covriiii 162
5.2.88 http.redirect() ..coooiiiiiiiii e 163
5.2.89 http.removeCookie(NAME) .civiiiiiiiiiiiiiicci e 163
5.2.90 http.removeHeader(NAamMe).....ccoviiiiiiiiiiiiii e 163
5.2.91 http.removeResponseCookie(Name)ccevviiiiiiiiiniinninnnnn. 164
5.2.92 http.removeResponseHeader(NAMe)ocovevviiiiniiiinieinnnns 164
5.2.93 http.responseHeaderExists(hame)cocvviiiiiiiiiiiinninnns 165
5.2.94 http.scrubRequestHeaders(headerl, header2, ...).............. 165
5.2.95 http.scrubResponseHeaders(headerl, header2, ...)............ 166
5.2.96 http.sendResponse(code, type, body, headers).................. 167
5.2.97 http.setBody(body) ..cciviiiiiiiii 168
5.2.98 http.setCookie(name, value)cocoveiiiiiiiiiiiiiiiiieees 168
5.2.99 http.setHeader(name, value)cooviiiiiiiiiiiiiiiiees 169
5.2.100 http.setldempotent(resend)cccoovveiiiiiiiiiiiiiiiiiees 170
5.2.101 http.setMethod(method)......cooviiiiiiiiiiii 171
5.2.102 http.setPath(Url). .coiiiiii s 171
5.2.103 http.setQueryString(querystring)ccoeviiiiiiiiiiiiiiiees 171
5.2.104 http.setRawQueryString(querystring)ccoovviiiiiiiiinnnns 172
5.2.105 http.setResponseBody(body, [transfer-encoding]) 172
5.2.106 http.setResponseCode(code, [message]) .covvvvvinivnerernnnnnns 173
5.2.107 http.setResponseCookie(name, value, [options]) 173
5.2.108 http.setResponseHeader(name, value)cccovviviiiiiiiiinnnnn. 174
5.2.109 http.cache.disable() ...ccoviiiiiiiiiii 174
5.2.110 http.cache.enable()....ccoviiiiiiiiiii 175
5.2.111 http.cache.exists([poolname])..icciiiiiiiiiiiiiiiiiii e 176
5.2.112 http.cache.respondIfCached([poolname])cccovvvvieiiiinnnnnn. 177
5.2.113 http.cache.setkey()..cioiiiiiiiii 178
5.2.114 http.compress.disable()....ccoiiiiiiiiiiiiiiii 178
5.2.115 http.compress.enable() ...c.ccoviiiiiiiiiiii 179
5.2.116 http.request.get(url, [headers], [timeout])ccvvvvnnnens 180
5.2.117 http.request.head(url, [headers], [timeout])ccuneee. 181
5.2.118 http.request.post(url, POST data, [headers], [timeout]) . 182
5.2.119 http.stream.continueFromBackend([data])......c.ccveeviiinnnnnn. 183
5.2.120 http.stream.finishResponse([data]).....cccvevviiiiiiiiiiiiinnnnn. 184
5.2.121 http.stream.readBulkResponse(count, [delimiter])............. 185
5.2.122 http.stream.readResponse(count, [delimiter])................... 186
5.2.123 http.stream.startResponse(resp_code, content_type,
[content_length, headers]) ..ooiiiiiiiii 187
5.2.124 http.stream.writeResponse(data).......cccoevieiiiiiiiiiiiniinnnens 188
5.2.125 java.run(Java Extension class name, [options]) 188
5.2.126 10G.€rror(MESSAGE) .eueriuernineiraeinatataerneneananerneneananernanens 189
5.2.127 10G.infO(MESSAGE) euviuiiriiiiiiiiiii i 189
5.2.128 10g.WarN(MESSAGE) .oueriuerniniitiiinieateeineneaneneraeneananernanens 189
5.2.129 net.dns.resolveHost(hostname)c.coviiiiiiiiiiiiciii s 190
5.2.130 net.dns.resolveHost6(hostname)c.cccvvvveiiiiiiiiiiineinenens 190
5.2.131 net.dns.resolveIP(IP address)......coveviviiiiiiiiiiiiiiniiineienens 191
5.2.132 pool.activenodes(POOI) ..cciviiiiiiiiiiiiiiiiine s 191

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 9 OF 275

— I e ——— i
—_— —
5.2.133 pool.checknode(Pool, Host, POrt)ccccvvviiiiiiiiiiiciieceee 192
5.2.134 pool.select(Pool, [Host, Port J) .ccovvviiiiiiiiiiiiiiiieceee 192
5.2.135 pool.use(Pool, [Host, POrt]).cceiiiiiiiiiiiiiiiiiiieieceeee 193
5.2.136 rate.getbacklog(class_name, [context])...ccovvvviiiiiiiinnnnnn. 194
5.2.137 rate.use(class_name, [context])..ccevvriiiiiiiiiiiiiiiininnnnn, 194
5.2.138 rate.use.noQueue(class_name, [context])ceevvviiiinnnnnn. 195
5.2.139 request.avoidNOde() . .cvviiiniiiiiiiiir 196
5.2.140 request.endsSAt(OffSet).coririeieiniiii e 196
5.2.141 request.endsWith(regeX)ccoiviiiiiiiiiiiiii s 197
5.2.142 request.get([CouNnt]) ..oooiriiiiiiiiii 197
5.2.143 request.getBandwidthClass().........covviiiiiiiiiiiiiiiiees 198
5.2.144 request.getDestIP() ...ccviiiiiiiiiiiii 198
5.2.145 request.getDestPOrt()....ccooviiiiiiiiiiiii 198
5.2.146 request.getlength()c.cooiiiiiiiii 199
5.2.147 request.getLine([regex], [offset]) .cccoviviiiiiiiiiiiiiiiiiieens 199
5.2.148 request.getLocCalIP()....cooviiieiiiiiiiii e 200
5.2.149 request.getLocalPort()....cccviiiiiiiiiiiii 200
5.2.150 request.getLogEnabled(enabled).......cocvviviiiiiiiiiiiiiiiennn 200
5.2.151 request.getRemoteIP()ccoiiiiiiiiiiiii s 201
5.2.152 request.getRemotePort()coovviiiiiiiii 201
5.2.153 request.getRetries() ...ccooviiiiiiiiiii 202
5.2.154 request.getToS(Type of Service)....cvvveierereiiiiiiiiieieneenes 202
5.2.155 request.isResendable().....ccoviiiiiiiiiiiiiiiii 203
5.2.156 reqUEST.FEEIY () cuiieiiiii it e 204
5.2.157 request.sendResponse(Data).....ccvveviiiiiiiiiiiiiiiiiiiieeeeee 205
5.2.158 request.set(request data)ccovvviiiiiiiiiiiiiiiii 205
5.2.159 request.setBandwidthClass(name)cccoviiiiiiiiiiiiiiiiiinnnns, 206
5.2.160 request.setldempotent(resend)coccviiiiiiiiiiiiiiiiiiiieee 206
5.2.161 request.setLogEnabled(enabled).......coovvviiviiiiiiiiiiiiiinnns 207
5.2.162 request.setRemoteIP() ..cciiiiiiiiiiiiii i 207
5.2.163 request.setToS(Type of Service)..cccvviiiiiiiiiiiiiiiiiiiiiiiiaennsn 207
5.2.164 request.skip([COUNE]) civriiiiiiiiiiii i 208
5.2.165 resource.exists(filename)....ccooviiiiiiiiiiiiiiii 208
5.2.166 resource.get(filename) ..ocoviiiiiiiiiiiiii 209
5.2.167 resource.getLines(filename)ccocvviiiiiiiiiiiiiiii e 209
5.2.168 resource.getMD5(filename)....coviiiiiiiiiiiiiii i 210
5.2.169 resource.getMTime(filename)cocvviiiiiiiiiiiiiiiieeens 210
5.2.170 response.append(response data).....cccceviiiiiiiiiiiiiiiiiiiinenn, 210
5.2.171 reSpPONSE.ClOSE() «uuueiuiniitiiieii et 211
5.2.172 response.flush(count)....ccoiiiiiiiiii 211
5.2.173 response.get([Count]) .cooiiiiiiiiiiii e 212
5.2.174 response.getBandwidthClass().......cveviviiiiiiiiiiiiiiiiieiieens 212
5.2.175 response.getlength() ...c.coveiniiiiiiiiii s 212
5.2.176 response.getLine([regex], [offset]) ...ccoeviiiiiiiiiiiiiiiiiinnns 213
5.2.177 response.getLoCalIP()....ccoviiiiiiiiiiiiiii s 213
5.2.178 response.getLocalPort()....cocvveiiiiiiiiiiii s 214
5.2.179 response.getRemOoteIP()ccvviiiiiiiiiiiii i 214
5.2.180 response.getRemotePort()covvveiiiiiiiiiii s 214

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 10 OF 275

= e — —_— e PR
e ——— — —= —
_— — = — .
= —— —
— — e ——

5.2.
5.2.
5.2.
5.2.
5.2.
5.2.
5.2.
5.2.
5.2.
5.2.
5.2.
5.2.
5.2.
5.2.
5.2.
5.2.
5.2.
5.2.
5.2.

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

5.2.200
5.2.201
5.2.202
5.2.203
5.2.204
5.2.205
5.2.206
5.2.207
5.2.208
5.2.209
5.2.210
5.2.211
5.2.212
5.2.213
5.2.214
5.2.215
5.2.216
5.2.217
5.2.218
5.2.219
5.2.220
5.2.221
5.2.222
5.2.223
5.2.224
5.2.225
5.2.226
5.2.227
5.2.228

response.getToS(Type of Service)..ivovviiiiiiiiiiiiiiiiiiiieanens 215
response.set(response data)ccooviiiiiiiiiii i 215
response.setBandwidthClass(name)ccovvivviiiiiiiiiiieninnns 216
response.setToS(Type of Service)...covviiiiiiiiiiiiiiiiiiiiiiinns 216
rtsp.addRequestHeader(name, value)ccovviiiiiiiiiiiiinnnns 216
rtsp.addResponseHeader(name, value)cccviviiiiiinnnns 217
rtsp.getMethod()oooviiiiiii 217
rtsp.getPath() ..o 217
rtSp.getRaWURL() ..ovviiiii e 218
rtSp.getReqUEST() ..vvviiiii i 218
rtsp.getRequestBody([count]) .ooviiriiiiiiiiiiii e 219
rtsp.getRequestBodyLines(count) ...ccoovivviviiiiiiiiiiieniennnns 219
rtsp.getRequestHeader(NAMe)..c.ocvvvviiiiiiiiii e 220
rtsp.getRequestHeaderNames() - deprecated 220
rtsp.getRequestHeaders() ...coovvvieieiiiiiiiin e 220
rtSP.getRESPONSE() «uviuiniiiie i e 221
rtsp.getResponseBody([COUNE]) cevviiiiiiiiiiiiiiiiiees 221
rtsp.getResponseBodyLines(count)cocevevviiiiiiiiininnnens 222
rtsp.getResponseCode() .ovvvviireiiiiiiiii e 222
rtsp.getResponseHeader(NAmMe)...cvvvviiieiieiineiirienneeneens 223
rtsp.getResponseHeaderNames() - deprecated.................... 223
rtsp.getResponseHeaders()coovviiiiiiiiiii e 223
FESP.GEEVEIrSION() vivvieiiiiiii i e 224
rtsp.listRequestHeaderNames() ...coovviiiiiiiiiiiiiii i 224
rtsp.listResponseHeaderNames()coovveiiiiiiiiiiiciiciiieeeens 225
rtsp.redirect(path) .ooovviiiiii 225
rtsp.removeRequestHeader(Nname).....ccviviiiiiiiiiiiiiiinnnnns 226
rtsp.removeResponseHeader(name)....cccovivviiiiiiiiiinnnnnns 226
rtsp.requestHeaderExists(NAmMes) ...ccvvviiiiiiiiiiiiiiiiieeans 226
rtsp.responseHeaderExists(Name)...ccveviiiiiiiiiiiiiiiiiin, 227
rtsp.sendResponse(code, body, headers)......cccovvvviiiiininnns 227
rtsp.setMethod(method)coooiiiiiiiiiiiii 228
rtsp.setPath(url) ..o 228
rtsp.setRequestBody(body)..ccovviiiiiiiiiiiiii 228
rtsp.setRequestHeader(name, value)ccoviiiiiiiiiiiininn, 229
rtsp.setResponseBody(body) ...ccvviiiiiiiiiiiiiiiiii 229
rtsp.setResponseCode(code, [message]) ..ccvvvvirviinninninnnnns 230
rtsp.setResponseHeader(name, value)ccoovvviiiiiiiiiiennnns 230
FUlE.GEENGMIE() . e e e 230
rule.getState() covvi i 231
sip.addRequestHeader(name, value, at_top)........cevvvvnnnnnn. 231
sip.addResponseHeader(name, value, at_top).......cocevuvnnen. 232
Sip.getMethod() ..ccvvieiii i 232
SIP.GEtREQUESE() cuvreie i 233
sip.getRequestBody () ...covviiiiiiiiii 233
sip.getRequestBodyLines().....ccoviiiiiiiiiiiiin e 234
sip.getRequestHeader(NAMe) ..oocvviiiiiiiiiiiici e nae e 234
sip.getRequestHeaderNames() - deprecated...............c.cc..... 235

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE || OF 275

— —— — e e
—_— —
5.2.229 sip.getRequestHeaders() ...covivviiiiiiiiiiiiiiiiiici e 235
5.2.230 sip.getRequestURI() . .cciviiiiiiiiiiiiiii i ea 236
5.2.231 Sip.getRESPONSE() .iuriiuiiiiiiiiiiitiii et i ie e eas 236
5.2.232 sip.getResponseBOodY() . iceiieiiriiiiiiiii i e 237
5.2.233 sip.getResponseBodyLings()....ccovvviiiiiiiiiiiiiiiiiii i 237
5.2.234 sip.getResponseCode() . iceiieiiriiiiiniiieiiiieiieiiteie e rieaneaens 238
5.2.235 sip.getResponseHeader(Name) ..covvviiiiiiiieiinineiierieinenneenens 238
5.2.236 sip.getResponseHeaderNames() - deprecated 238
5.2.237 sip.getResponseHeaders() . ooocvivieiiiiiiiiiiiiiiire s 239
5.2.238 Sip.getVersion() . .coeivieiiiiiiiiiiiiii e 239
5.2.239 sip.listRequestHeaderNames()......ocovvviiiiniiiiniiiiiiieienens 240
5.2.240 sip.listResponseHeaderNames().....c.cocvivveininiiiiniiiniiinninnnens 240
5.2.241 sip.redirect(cONtact)......ccooviiiiiiiiii 241
5.2.242 sip.removeRequestHeader(name)cccoevviiiiiiiniiineinnnens 241
5.2.243 sip.removeResponseHeader(hame)cccovviiiiiiiiiiinninnnens 242
5.2.244 sip.requestHeaderExists(name)cooeviiiiiiiiiiiiicii 242
5.2.245 sip.responseHeaderExists(Name)cocevviiiiiiiiiiiiniiinieens 243
5.2.246 sip.sendResponse(code, reason, [headers], [body]) 243
5.2.247 sip.setMethod(method).....cccviiiiiiiiii 244
5.2.248 sip.setRequestBody(body) ..ccovviiiiiiiiiiiiiii 244
5.2.249 sip.setRequestHeader(name, value)cccovviiiiiiiiiniinnnnnnnnn 245
5.2.250 sip.setRequeStURI(Uri) iovieiiiiiiiiiiiiiii e 245
5.2.251 sip.setResponseBody(body) .ccoviiiiiiiiiiiiii 246
5.2.252 sip.setResponseCode(code, [MesSSage]).icvverrvirreinenninernnnnns 246
5.2.253 sip.setResponseHeader(name, value).....cccvevviviiiiiiiiinnnnn. 247
5.2.254 sIlm.conforming([class Nname]) .cocoveiiiiiiiiiiiiiiiiiiiiiiininnens 248
5.2.255 sIm.isOK([class_Name]).eiciiiiiiiiiiiiiiiiiiiiie e eneeens 249
5.2.256 sIlm.threshold([class_name])..icciiiiiiiiiiiiiiiiiiiiiiiecaeee 250
5.2.257 sSl.clientCert().cei it 251
5.2.258 ssl.clientCertAlgorithm() c.ocvvvieiiiiii e 251
5.2.259 ssl.clientCertChain()...ccooiiiiiiiiic e 251
5.2.260 ssl.clientCertEndDate()..c.ccoiiiiiiiiiiiiiiiccc e 252
5.2.261 ssl.clientCertHash()....ccoviiiiiiiii 252
5.2.262 ssl.clientCertISSUEI() .iuiiiiiiiiiiiii i i e ea 253
5.2.263 ssl.clientCertPublicKey () c.ovviriiiiiii i 253
5.2.264 ssl.clientCertSerial()...ccvveiiiiiiiiiii i 253
5.2.265 ssl.clientCertSerialDec() ..ovvvvriiiiiiiiiii i 254
5.2.266 ssl.clientCertStartDate() ..oovvviiiiiiiiiii i 254
5.2.267 ssl.clientCertStatus().....cooiiiiiiiii s 255
5.2.268 ssl.clientCertSubject() ...covveiieiiiiii i 255
5.2.269 ssl.clientCertVersion() ...coovviiiiieiiiiiii i 255
5.2.270 ssl.clientCipher() ..ocoovi i 256
5.2.271 ssl.clientSupportsSecureRenegotiation()coovvevvviiiiieinnnens 256
5.2.272 ssl.getClientClosSeAlert() .oovviiiiiiiiii e 257
5.2.273 ssl.getServerCloseAlert() ..oovvviiiiiiii e 257
5.2.274 ssl.getTLSServerName() oo v veeveneiiiiieiiei e 258
5.2.275 SSLISSSL() teuvrrrininaneieiieiererererasarraraeaea e 258
5.2.276 SSL.requUir@Cert() «.vveiiieiii i 259

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 12 OF 275

() ZeUs

— — e ——— i
5.2.277 SSL.SEIrVEICEIT() viveiiriiiii it e s ea 259
5.2.278 ssl.serverCertAlgorithm()..ccooiviiiiiiiii e 260
5.2.279 ssl.serverCertCommonName() . .covvvvieiiiiiiiiiiiiiie i eieeneennes 260
5.2.280 ssl.serverCertEndDate() c.vvvvvriiiiiiiiiiiiicc e 261
5.2.281 ssl.serverCertHash() ...ccoveiiiiiiiiiiiiii i 261
5.2.282 SSI.5erverCertISSUEI() . .cuveiieiiriireiiiie ittt i siteaneineeerieaneaens 262
5.2.283 ssl.serverCertName() ...oovvevviiiiiiiiiri e 262
5.2.284 ssl.serverCertPublicKey()......oooiiiiiiiiiii 263
5.2.285 ssl.serverCertSerial() .ooovveiiiiiiiiiiii 263
5.2.286 ssl.serverCertStartDate()......ocviviiiiiiiiiiiiii s 264
5.2.287 ssl.serverCertSubject()....ccvovviiiiiiiiiii 264
5.2.288 ssl.serverCertVersion() . ooocveveviiniiiiiiininrs s 265
5.2.289 ssl.serverSiteName()...coovveiiiiiiiiiiie s 265
5.2.290 ssl.setClientCloseAlert(alertflag) ..c.ovvvveveieieiiiiiiiiiiiieieneenen 266
5.2.291 ssl.setServerCloseAlert(alertflag)....cocveveveieiiiiiiiiiiiineenen 266
5.2.292 ssl.setTLSServerName(Servername)..c.ocvevvevreneinineinenernnnens 267
5.2.293 5S1.SSISESSIONID() tuvuviniiriiieii i 267
5.2.294 tcp.cCloSe(SOCK) cuiniiniiiii i 268
5.2.295 tcp.connect(ip, port, [timeout]) ..cccvviiiiiiiiii e 268
5.2.296 tcp.read(socket, maximum, [timeout])......ccoevviiiiiiiiinnnn. 269
5.2.297 tcp.write(socket, data, [timeout])....ccovvviiiiiiiiiiiii e 270
5.2.298 xml.validate(document, DTD) - deprecated....................... 270
5.2.299 xml.validate.dtd(document, DTD) ..cociviiiiiiiiiiiiiiciiicceeee 271
5.2.300 xml.validate.xsd(document, schema)ccceovviiiiiiiinnnnn. 271
5.2.301 xml.xpath.matchNodeCount(doc, nspace, query)............... 272
5.2.302 xml.xpath.matchNodeSet(doc, nspace, query)....ccccvvevnennnn. 272
5.2.303 xml.xslt.transform(document, stylesheet)..........ccceivvinnnnnn. 273

FUrther RESOUICES ..uuiaiumiranrarsnseranrarsnsersssassnsarsssarsnsassnssssnsassassssasassnssssasassnsasnnsas 274
6.1 ZEUS MaNUAIS .. viiie it 274
6.2 ONNE HelP oo 274
6.3 INFfOrmMation ONIINE ..oiviii i e e e 274
1 T = 275

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 13 OF 275

Introduction

1.2

Introducing Zeus Traffic Manager

Zeus Traffic Manager is a high-availability, application-centric traffic management and load
balancing product. It provides control, intelligence, security and resilience for all your
application traffic. Zeus Traffic Manager is intended for organizations hosting valuable
business-critical services, such as TCP and UDP-based services like HTTP (web) and media
delivery, and XML-based services such as Web Services.

Zeus Traffic Manager’s unique architecture ensures it can handle large volumes of network
traffic efficiently. Its TrafficCluster™ scalability allows you to add more front-end traffic
managers or back-end servers to your cluster as the need arises. The cluster size is
unlimited, and the performance of the traffic manager grows in line with the performance
of the hardware.

Zeus Traffic Manager is a highly capable solution which can also be adapted and extended
as new requirements arise. Using the TrafficScript language you can write tailored traffic
management rules to inspect, manage and route requests and responses. TrafficScript
rules can manage connections in any TCP or UDP-based protocol.

Zeus Traffic Manager is secure out-of-the-box, and is hardened against intrusion and
Denial-of-Service (DoS) attacks. It incorporates the fastest and strongest SSL encryption
technologies, and can efficiently decrypt and encrypt large numbers of SSL connections.
TrafficScript rules, security policies and other content-based calculations can be applied to
the encrypted request while retaining full end-to-end security.

For critical, high-availability solutions, Zeus Traffic Manager offers TrafficCluster™
redundancy. This allows you to have unlimited numbers of active and standby front-end
servers. If one of your active machines fails, a standby traffic manager will be
automatically brought into action; in the case of subsequent failure, more standby servers
are available to take up the load. This ensures that there is no single point of failure in the
system.

A centralized web-based administration console monitors and manages each traffic
management unit in your service infrastructure.

The TrafficScript language

Zeus Traffic Manager can be customized using custom traffic management rules. These
rules are created using a scripting language called TrafficScript.

TrafficScript rules are executed whenever a new connection or network request is received,
and whenever it receives a response from a node. The rules can inspect the incoming and
outgoing data in the connection, and other aspects such as the remote client address.

The TrafficScript rules can then modify the request or response (for example, rewriting the
URL or headers in an HTTP request), set session persistence parameters, or decide how to
route the request to the most appropriate pool.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 14 OF 275

— - Tt e —————
l Request
} TrafficIP
Group
Virtual Server H Rule U
Rules held
. In catalo
Monitor g
I Pool
Monitors held
In catalog
Node
Fig. 1. Analyzing and managing traffic using TrafficScript rules

This makes it possible to control precisely how traffic is using rules designed to meet to
your own hosting requirements.

Using TrafficScript it is extremely easy to perform any of these traffic management tasks:

e Inspect incoming or outgoing traffic and rewrite it fully or in part as
desired.

e Restrict a website to a certain range of IP addresses.
e Apply selective management to elements such as web spiders.

e Enable or disable functions for a given request or response (such as
compression)

e Retry request that generate errors a maximum number of times.

e Future-proof your services against any change in the back-end
components of the system.

e Work around broken links and content on your website.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 15 OF 275

() ZeUs

1.2.1

TrafficScript Examples

The following TrafficScript rule can be used with HTTP requests. It handles the request as

follows:

e Requests for ‘www.zeus.co.uk’ are rewritten to ‘www.zeus.com';

e Requests for .jsp pages are routed to a set of application servers (the pool named

JSPServers);

e Requests for URLs beginning ‘/secure’ are only allowed during office hours.

Rewrite host header if necessary
if (http.getHeader ("Host") == "www.zeus.co.uk") {

http.setHeader ("Host", "www.zeus.com");

Spath = http.getPath();

Give .jsp requests to the ‘JSPServers’ pool
if(string.endsWith(S$path, ".jsp")) {

pool.use("JSPServers");

Deny access to /secure outside office hours
if (string.startsWith($path, "/secure")) {
if(sys.time.hour() < 9 || sys.time.hour() >= 18) {

connection.discard() ;

The next rule can be used with HTTP responses. It processes the response as follows:

e If the status code is 404 or 5xx, retry the request a maximum of 3 times;

e If the response contains references to www.zeus.co.uk, rewrite it by changing

these references to www.zeus.com.

Scode = http.getResponseCode () ;
if($code == 404 || $code >= 500) {
if (request.getRetries() < 3) {
Avoid the current node when we retry,
if possible
request.avoidNode (connection.getNode ());

request.retry () ;

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 16 OF 275

() ZeUs

} else {
http.sendResponse ("312 Redirect", "text/plain",

""", "Location: /");

We're only going to process text/html responses, so
break out of the rule if the response is of a
different type...
if (http.getResponseHeader (
"Content-Type") != "text/html") break;

Note: need to prevent node giving compressed
responses Should use

http.removeHeader ("Accept-Encoding") in

request rule

Sresponse = http.getResponseBody () ;

if(string.contains(S$response, "www.zeus.co.uk")) {
Sresponse = string.regexsub(Sresponse,
"www.zeus.co.uk", "www.zeus.com", "g");

http.setResponseBody ($reponse) ;

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 17 OF 275

1.3 Application of Rules

There are many occasions when you might use a TrafficScript rule.

Rules are used by a virtual server to choose a pool to handle a request. The rule can
inspect any part of the request, possibly modify it, and decide which pool should handle
the request.

You can use a rule to dictate session persistence information to a pool. After
inspecting the request the rule can use the connection.setPersistenceKey ()
function to provide a string to persist on. This string is used by the Universal
session persistence method to identify the session the request belongs to.

Rules can be used to check the response from the server and modify it, or even
retry the request (if possible) if a transient error was detected.

If you use various back-end systems with different presentation styles or even
different protocols, rules can be used to integrate them into a single, coherent and
consistent service. Incoming requests can be rewritten into the format suitable for
the required service, and responses can be rewritten into a single, consistent form.

For example, HTTP requests that involve a database lookup can be rewritten into
SOAP request for a Web Service; the XML response can then be transformed into a
suitable HTML document to return via HTTP.

Rules can override the classes assigned to a connection by the virtual server or the
pool. This way, they can specify custom behaviour for each connection;
connections to a slow resource can be given a longer response time tolerance for
example. Classes you can assign in this way include Service Level Monitoring,
Session Persistence and Bandwidth Management.

Service protection classes can use rules. If you have associated a service
protection class with your virtual server, it inspects the incoming packets. The
class may use a rule to check the packet for a match with known web worms or
viruses. This rule is executed before the main processing of the virtual server is
carried out.

1.4 Using aTrafficScript Rule

TrafficScript rules are stored in the Rules Catalog. You can create rules here, modify or
duplicate them, and delete unused rules as required.

A virtual server processes traffic, and you can configure the virtual server to execute one
or more rules from the catalog each time it receives a new connection.

This way, several different virtual servers can use the same rule, and modifications to the
rule take effect on all virtual servers.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 18 OF 275

() ZeUs

To use the TrafficScript functionality you need to:
1. Create a new rule in the catalog.

2. Configure your virtual server to use the rule (Virtual Servers, edit the server,
then go to Rules).

1.4.1 Create a Rule in the Catalog

1. Click the Configure button in the tool bar. Go to the Catalogs tab, then click
Rules Catalog.

2. Below Create New Rule, enter a name for your rule. To write the rule in
TrafficScript select the TrafficScript Language option, then click Create Rule.

zxtml {admin/admin) Logout a |

(@ cummox "+) @ @O0 00 - ®

0b/s

Home @ Seryj Catallgs Diagnose | Activity System Help
Catalogs: les | Java | Monitors | SSL | Protection | Persistence Bandwidth | SLM | Rate Extra Files
Rules Rules Catalog Unfold All / Fold All
Catalo
The Rules Catalog contains a set of traffic inspection rules that you can apply to a virtual server,
2 > Cache Content @ Edit
> Insert Footer @ Edit

MName:

3 * Use RuleBuilder

—

Use TrafficScript Language

Create Rule

Fig. 2. 3 simple steps to create a new rule

3. This takes you to the TrafficScript editing page. Here you can enter a text
description of the rule, and type the rule. You may wish to write the rule in a
separate text editor before pasting it in.

You can click the TrafficScript Help link to view the quick function reference, and
use the Check Syntax button to check your rule.

4. When you have finished, click the Update button to save your edits.

rules. For example, a function that modifies a parameter of a request will have no effect if
used in a response rule (as the request has already been submitted to a node). Please
refer to the documentation for each function in this manual, or in the online help.

ﬂ Note that some TrafficScript functions are only appropriate in request rules or in response

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 19 OF 275

() ZeUs

1.4.2 Configure aVirtual Server to Use a Rule

The new rule has been successfully created, but is not yet being used by any virtual
servers. To configure a virtual server to use the rule, follow the instructions below.

1.

3.

Go to the Virtual Servers > Edit page for your virtual server. You can do this by
clicking the Configure button, then the Virtual Servers tab. Click on the name of
your virtual server.

Now click on Rules. This presents you with a list of request rules and a list of
response rules currently in use for that virtual server. You can choose new rules to
add to each list from the drop-down selection at the end of each list.

Configuring: Traffic IP Groups I Yirtual Servers > WEB SITE > Rules I Pools Config Summary

Edit Rules Virtual Server: WEB SITE (HTTP, port 80) Unfold All / Fold All

TrafficScript rules are evaluated in order. If a rule selects a pool, the request is balanced by that pool, and no
more rules are evaluated. If no pool is selected, the request is balanced by the default traffic pool.

Request Rules

Request rules are evaluated before the request is sent to the pool.

‘” P ./ Rewrite Request bled @ o Disabled @ @ Edit in catalog
H| » Route images O @ Di @ C") Edit in catalog

Add new request rule
Cache Content - Add Rule

@ Manage Rules in Catalog

Response Rules

Response rules are evaluated after the server responds to a request.

[[» + 1nsertFooter @® O oi ® (® edit in catalog
3 RSS Insert bled () (%) Disabled ®) (® Edit in catalog
[[» + Retry request bled (&) () Disabled () (® edit in catalog
3 Cache Content O @® oi ® (® edit in catalog
[[» + Login persistence bled (&) () Disabled @ (® Edit in catalog
[[» + Limit Login Attemp bled (&) () Disabled () (® editin catalog

Add new response rule
Rewrite Request « Add Rule

@ Manage Rules in Catalog

Fig. 3. Applying a rule to a virtual server

Rules are executed in a specified order. If the first rule does not make a final
decision about a request or response, the second rule is tested, etc. You can drag
rules up and down to re-order the list.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 20 OF 275

() ZeUs

4. For non-http protocols, you can specify whether the rule should be executed just
once (against the first request or response), or against every request and response
in the protocol dialogue.

request-response protocol, and requests within a keepalive connection are

ﬂ This option is not necessary for HTTP virtual servers because HTTP is a single
processed independently.

You can test the effect of a new rule by enabling and disabling it for your test virtual
server.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 21 OF 275

\
\

/
|
’N
\

1

u“

f
9

TrafficScript Syntax

2.1

2.2

TrafficScript is the scripting language provided by Zeus Traffic Manager. An administrator
can create TrafficScript rules to process requests, implementing suitable logic to ensure

that requests are handled in the most appropriate way.

TrafficScript is similar to many other programming or scripting languages, such as C or

Perl. This chapter describes the syntax of the language.

Statements

A command in TrafficScript is called a statement. Each statement ends with a semicolon

*;’, and a TrafficScript rule typically contains several statements.

http.setHeader ("Host", "secure.mysite.com");

pool.use("mypool");

Any text between a ‘#’ and the end of the line is called a comment and is ignored.

Write a message to the error log file

log.info("Starting to run rule now!");

Sbody = http.getBody(); # get the POST data

Constants

TrafficScript allows you to specify integer, floating point and string values:

o Integers: sequences of digits, such as ‘23’; hex format (Oxff) and octal format

(\377) are also supported.

o Floating point: decimal point (3.14) and scientific (5.6e-2) notations are both

supported.

e Strings: strings are character sequences, enclosed by " (double) quotes or '

(single) quotes.

In double-quoted strings, special characters can be escaped using the standard *\’
notation (for example, "\n” is a newline character), using octal notation (“\012" is
also a newline) or using hexadecimal notation ("\x0A" is a newline).

In single-quoted strings, no escaping is performed. For example, ‘\n’ is not
converted to the newline character; in fact, it is not possible to embed a newline
character in a single quoted string.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 22 OF 275

() ZeUs

2.3

24

In both types of string, for improved readability, strings can be broken across lies
using a single '\’ followed by a newline:

The following two lines both create the string ‘Hello world’

Ssingle = 'Hello \
world';
Sdouble = "Hello \
world";

You need to be aware of escaping rules when writing regular expressions in TrafficScript.
For example, in a double-quoted TrafficScript string, the character '\’ automatically
escapes the next character, so if you want a literal '\’ in your string, you need to double-
escape it "\\'. For this reason, regular expressions are often written using single-quoted
strings.

Variables

Variables are used in TrafficScript to store values while the rule is executed.

A variable can store an integer, floating point or string value. The value is interpreted as
the correct type depending on its context.

Variables have global scope, and exist for the duration of the execution of the rule. Values
stored in variables are discarded when the rule completes.

Variable names always start with the ‘$’ character, and the value of a variable is set by the
assignment operator ‘=",

Variables are immutable in TrafficScript i.e they are never directly modified by functions, a
copy of the argument is modified.

Spath = http.GetPath() ;
Sbytes = connection.getDatalen () ;

$pi = 3.14157;

Expressions

Expressions in TrafficScript are created from combinations of literal values, variables,
evaluated functions and operators. Expressions are evaluated when the rule is executed.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 23 OF 275

() ZeUs

2.4.1

Expressions can be used to:

e Construct complex strings from several different values;

e Create complex tests for ‘if’ conditions or ‘while’ loops;

e Perform mathematical calculations.
An expression can be used anywhere a literal value (or variable) would be suitable.
You'd normally see expressions:

e In assignment statements, assigning a value to a variable;

e In conditions - ‘if/else’ statements and ‘while’ loops;

e As function arguments.

For example:

Smessage = "The URL path is " . http.GetPath();
Sfour = 2 + 2;

Sets S$ratio to "75%" (for example)

Sratio = ($Sa / ($a + S$b) * 100) . "S&";

ScontentLength = http.getHeader ("Content-Length");
if ($contentLength > 1024 * 1024) {
log.warn("Large request body: ".ScontentLength);

Operators

Expressions are constructed from operands (variables, literal values, etc.) and operators.
Operators perform calculations or tests on their operands.

Operands in an expression are automatically promoted to the appropriate type: string,
integer or float in accordance with the typecasting rules described in section 2.4.2. The
following operators can be used:

Mathematical

The operators ‘+’, -/, **' and '/’ treat their operands as integers or doubles and add,
subtract, multiply or divide them.

The prefix operator ‘-’ promotes its operand to an integer or double and returns its
negation.

4 + 7.5 * Sa

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 24 OF 275

() ZeUs

-b / Sc - 1

The modulus operator ‘%’ takes integer operands, and calculates the remainder after
division.

$ 3 # Returns 1
7 # Returns 3

String Concatenation

The operator *.” promotes its operands to strings and concatenates them.

"The message is "

(Sa / (Sa + $b)

Sbytes
* 100)

" bytes long."

" percent"

The '.=’ operator appends its second operand to the first:

Smessage

Smessage = "The name is ";

’

.= "Bond, James Bond";

Comparison

\ 7

The operators ‘==
(false) or 1 (true).

’ ’

, 1=’ ', <!, '>=" and ‘<=’ compare their operands and return 0

If both arguments are strings, a string comparison is performed;

I

otherwise the operands are promoted to integers or floats and compared. The typecasting
promotion rules are described in section 2.4.2

1 > 3.14 # false

"99" > 100 # false (performs integer comparison)

"99" > "100" # true (performs string comparison)

Sa == $b # are the values of $a and $b the same?
Boolean

The operators '&&’ and ‘||’ perform boolean ‘and’ and ‘or’ tests.
performs a Boolean ‘not’ test.

The prefix operator ‘!’

These operators treat their operands as either ‘true’ or ‘false’, and return 1 (true) or O
(false):

¢ A non-zero number operand or non-empty string operand is ‘true’;

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 25 OF 275

() ZeUs

e A zero number operand or empty string operand is ‘false’.

"foo" && !0 # true
(1 <2) && (3 < 4) # true
$a || $b # true if Sa or $b is true
Increment/Decrement
$foo++ increment $foo after it has been referenced
$foo-- decrement $foo after it has been referenced
++9%$foo increment $foo before it has been referenced
--$foo decrement $foo before it has been referenced
$foo +=5 add 5 to the value of $foo ie $foo = $foo + 5
$foo -=5 subtract 5 from the value of $foo ie $foo = $foo - 5

Bitwise operators

The operators ‘&’ (bitwise-AND), *|’ (bitwise-OR) and *~’ (bitwise-XOR) perform bitwise
operations on their integer arguments. Strings and floats are typecast to integers using
the typecasting rules in section 2.4.2

0x1234 & 255 # 0x34
11 2] 4 # 7
1~ 3 # 2

The prefix operator ‘~’ (bitwise-NOT) performs a bitwise NOT on its integer argument.

~1 & Oxffff # 65534

The bitwise left- and right-shift operators (‘<<’ and *>>") perform left and right bit-shifts
on their integer argument.

1 << 2 # 4
2 >> 1 # 1

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 26 OF 275

() ZeUs

Precedence

Complex expressions follow the standard rules of precedence. Parentheses ‘(" and ‘)’ can
be used to group sub-expressions.

2.4.2 Type Casts in TrafficScript

Variables in TrafficScript can contain data of various types: integer, floating point (double)
or string. TrafficScript automatically casts (converts) values and variables into the correct
type when you evaluate an expression or call a function:

Value: Cast to integer: Cast to double: Cast to string:
14 (integer) 14 14.0 "14"

3.25 (double) 3 3.25 "3.25"
3.75 (double) 4 3.75 "3.75"
"abcde"(string) 0 0.0 "abcde"
"3.25" (string) 3 3.25 "3.25"
"3.75" (string) 4 3.75 "3,75"
"14str" (string) 14 14.0 "14str"
"3.2.7" (string) 3 3.2 "3.2.7"

Strings and doubles are rounded up or down to the nearest integer value when they are
cast to integers.

Sint = 10;
Sdouble = 2.71828;

string.len($int); # casts to string, returns 2

string.len(S$double); # casts to string, returns 7

Set S$string to "10, 2.71828"
$string = $int . ", " . Sdouble;

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 27 OF 275

() ZeUs

Convert $string to a number, and add 4:

Sr = Sstring + 4; # Sr is 14

2.5 Conditionals

TrafficScript provides ‘if’ and ‘if/else’ statements for conditional execution. The condition is
an expression, which is evaluated.

The return value of the expression determines whether the condition is ‘true’ or ‘false’:

or

The condition is evaluated.
the first statement list is executed.

A non-zero number or non-empty string is ‘true’;

’

A zero number or empty string is ‘false’.

if (<condition>) {

<statement list>

if (<condition>) {
<statement list>
} else {

<statement list>

case of an ‘if/else’ conditional).

If it is true (the value is non-zero, or is a non-empty string),
If it is false, the second statement list is used (in the

Spath = http.getPath() ;

if(string.startsWith($path, "/secure"

pool.use("secure pool");
} else {

pool.use("non-secure pool");

)

)

{

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 28 OF 275

() ZeUs

2.6 Loops

A body of code can be executed a number of times using a loop. TrafficScript supports

‘for’, *do’ and ‘while’ loops.

2.6.1 ‘for’ loops

A ‘for’ loop contains an initialization step, a test and an increment step, bracketing the

body of code to be executed on each iteration:

for(<initialization> ;

<statement list>

<condition> ;

<increment>) {

For example:

for(Scount = 0; Scount < 10;

log.info("In loop, count = "

Scount++)

Scount

{
)

This loop will print the message 10 times, with $count running from 0 to 9.

2.6.2 ‘while’ loops

The ‘while’ loop evaluates a condition, and while the condition is ‘true’, it executes the

enclosed block of code:

while (<condition>) {

<statement list>

For example,

Scount = 0;
while(Scount < 10) {
log.info("In loop, count = "

Scount = $count + 1;

Scount

)

This loop will print the message 10 times, with Scount running from 0 to 9.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 29 OF 275

() ZeUs

2.6.3 ‘do’ loops

2.7

The ‘do’ loop executes the enclosed block of code, then checks the condition. It repeats
the code while the condition evaluates to true:

do {
<statement list>

while (<condition>);

For example:

$count = 0;

do {
log.info("In loop, count = " . Scount);
$count = $count + 1;

} while(S$count < 10);

This loop will print the message 10 times, with scount running from 0 to 9.

TrafficScript contains a number of helper functions to manipulate complex data, such as
HTTP requests or long strings. Consequently, it is rarely necessary to use loops in
TrafficScript.

Other flow control

The 'break' and 'continue' statements can be used to restart or exit loop or rules
processing.

Inside a while loop, 'break' causes execution of the loop to stop; execution continues to
the statement after the loop. 'continue' causes the loop code to restart.

Inside a rule (i.e., outside any containing loops), 'break' causes execution of the rule to
stop; execution proceeds to the next TrafficScript rule. 'continue' causes the rule to be
restarted from the beginning.

For example:

We're only interested in processing HTTP text/html

responses...

Smime = http.getResponseHeader ("Content-Type");
if(!string.startsWith(Smime, "text/html")) break;

proceed with processing for text/html...

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 30 OF 275

() ZeUs

2.8 Complex DataTypes

2.8.1 Arrays

An array in TrafficScript is a structured variable that stores a list of values. You can define
a list of names for example using the following code:

Sarray = [“Alex”, “Matt”, “Oliver”, “Laurence”];

The values in this array can then be looked up:

Ssomeone Sarray[0];

log.info ($someone) ;

This will cause the string “Alex” to be printed to the event log. TrafficScript has functions
that make it easy to work with array structures. If you wanted to print all of the names
stored in $array using a for loop, you need to know the number of elements that it
stores. The array.length () function will return the number of elements in an array:

Sarray = ["Alex", "Matt", "Oliver", "Laurence"];

Sarraylen

array.length (Sarray) ;

log.info ("My array has " Sarraylen " elements.\n");
$i =0

; S$i++) {
log.info (

$i Lonon

$i < Sarraylen;
"Element #"

for (
Sarray[$i]) ;

When applied as a rule, the code above will cause the following output in the event log:

L L L

26/May/2010:03:39:10 +0100 INFO Rule arrays, Virtual Server Foo:
26/May/2010:03:39:10 +0100 INFO Rule arrays, Virtual Server Foo:
26/May/2010:03:39:10 +0100 INFO Rule arrays, Virtual Server Foo:
26/May/2010:03:39:10 +0100 INFO Rule arrays, Virtual Server Foo:
26/May/2010:03:39:10 +0100 INFO Rule arrays, Virtual Server Foo:

Element #3 Laurence
Element #2 Oliver
Element #1 Matt
Element #0 Alex

My array has 4 elements.

There is a slightly easier way to do this - using a foreach loop. Starting with the first
element, it initializes the variable specified on the left side of the in operator with a new
element as it goes through each element in the array. The code below will produce output

similar to the above:

Sarray = ["Alex", "Matt", "Oliver", "Laurence"];
$i = 0;
log.info ("My array has " array.length (Sarray) " elements.\n");
foreach (S$element in Sarray) {
log.info("Element #" g1 , T @ Selement) ;
Saldrrp
}

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 31 OF 275

() ZeUs

f
i

|
\

i

u“

2.8.2

2.8.3

f
9

For more information on array-specific functions, please refer to the TrafficScript Guide in
the Zeus Traffic Manager Admin UI.

Hashes

A hash in TrafficScript is similar to an array, but instead of storing a list of values it stores
a list of key/value pairs. Hashes are sometimes referred to as associative arrays. You can
define a hash using the following code:

Shash = ["orange" => "fruit",
"apple" => "fruit",
"cabbage" => "vegetable",

"pear" => "fruit"];

In order to print all of the keys and values stored in the hash, you can first get a list of
keys in the form of an array — using the hash.keys () function - that you can then use in a
foreach loop to print all of the values:

foreach ($key in hash.keys (Shash)) {
log.info ("Key: " . $key . "; Value: " . Shash[$key] . ";");

Combining the above two samples of code will result in the following output in the event
log:

& 26/May/2010:04:47:21 +0100 INFO Rule arrays, Virtual Server Foo: Key: orange; Value: fruit;

& 26/May/2010:04:47:21 +0100 INFO Rule arrays, Virtual Server Foo: Key: apple; Value: fruit;

& 26/May/2010:04:47:21 +0100 INFO Rule arrays, Virtual Server Foo: Key: cabbage; Value: vegetable;
& 26/May/2010:04:47:21 +0100 INFO Rule arrays, Virtual Server Foo: Key: pear; Value: fruit;

The global associative array
This is the first of two persistent associative arrays that TrafficScript can access.

The global array can be accessed using the data.set () and data.get () functions. Data
that is set in this array is persistent, and can be read from a later script. This array is of
fixed size (the size is defined by the global setting ‘trafficscript!data_size’); when it fills
up, you cannot add further entries without first removing some.

Maintaining the array

Elements are added and looked up using the data.set() and data.get() functions.
Individual elements can be deleted using the data.remove () function.

You can determine the amount of memory in use by the global array using
data.getMemoryUsage (), and delete all entries in the array using the data.reset()
function. You can delete a subset of the entries using data.reset ("prefix").

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 32 OF 275

() ZeUs

For example, if you wish to store several different types of data globally, you should use a
consistent prefix to start the name of each key. Then, if you need to free memory, you
can easily delete all of the data that is stored one particular purpose (for example, a global
cache that grows continually, but can safely be deleted and reconstructed if necessary).

Example: An indexed array

You can use the global associative array to create an indexed array named ‘myarray’ as
follows:

Declare a subroutine to calculate factorials
sub factorial($n) {
if($n ==) return 1;

return $n*factorial($n-1);

Put entries into the array

$c = 0;

while($c <= 10) {
Smsg = "Did you know that ". $c ."! is ". factorial($c) ."2"
data.set("myarray".c, Smsg);

SIEEE

Look up several entries. Note: the 1000th entry is empty

$msg = "";

Smsg .= "Index 5: ".data.get ("myarray5")."\n";
Smsg .= "Index 10: ".data.get ("myarraylO0")."\n";
Smsg .= "Index 1000: ".data.get("myarraylO000")."\n";

delete the entire array (but no other data stored by data.set)

data.reset ("myarray");

http.sendResponse ("200 OK", "text/plain", Smsg, "");

2.8.4 The connection-local array

This is the second of two associative arrays that TrafficScript can access.

When processing a connection, it is sometimes useful to store information calculated in
one rule for retrieval in a later rule. You can do this using a connection-local associative
array, using the connection.data.set () and connection.data.get () functions.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 33 OF 275

() ZeUs

|
\

i

u“

2.8.5

f
9

Information stored in this way can only be retrieved by a TrafficScript rule that is
processing the same connection, and all information is destroyed (and the memory freed)

when the connection completes.

Libraries

TrafficScript rules that contain subroutines can be used as libraries. Take the following

rule for example:

sub headbug () {

Prints each header to the event log.

Sheaders = http.listHeaderNames () ;

foreach (Sheader in S$Sheaders) {

log.info(Sheader . ": " . http.getheader (Sheader)) ;

The http.listHeaderNames () function returns an array of header names that were sent in
the HTTP request. If we save this as a rule named foo, we can then create another rule

called bar which imports the headbug subroutine:

import foo;

foo.headbug () ;

Applying this rule to a virtual server will cause the names and values for each header of

each request that the virtual server processes to be logged to the event log.

modify the first rule/library so that it creates a hash of each of the headers:

We can

sub headbug () {

Prints each header to the event log.
Sheaders = http.listHeaderNames () ;
foreach ($header in S$headers) {

Sheadhash = [$header => http.getheader (Sheader) 1;
log.info(S$header . ": " . Sheadhash[S$header]);

Although this library does the same thing, it does it slightly differently in that it creates a
data structure that can be used later. If we want to be able to use this structure later
however, we need to get it out of the subroutine. To do this, we need to get the headbug

subroutine to return the sheadhash data structure, then modify the bar rule:

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 34 OF 275

() ZeUs

2.9

foo (library)

sub headbug () {

Prints each header to the event log.

Sheaders = http.listHeaderNames () ;

Sheadhash = [];

foreach (Sheader in S$Sheaders) {

Sheadhash|[$header] = http.getheader (S$Sheader) ;
#log.info(S$header . ": " . Sheadhash[Sheader]);

return (Sheadhash) ;

(bar rule)

import foo;

Sheadhash = foo.headbug() ;

foreach ($header in hash.keys ($headhash)) {
log.info(Sheader . ": " . Sheadhash[S$header 1]);

Functions

A function performs an action, and returns a value. Functions are used to provide useful
capabilities to TrafficScript.

TrafficScript contains a large number of functions to manipulate data or manage the
current request. For ease of use, TrafficScript functions are grouped into families. For
example, functions that operate on HTTP requests all begin with ‘http.’, like
‘http.getHeader ()’ or*http.setBody () .

A function is called using its name, followed by a pair of parentheses ‘()’. Many
functions take one or more values as parameters, and these are listed inside the
parentheses.

connection.discard() ;

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 35 OF 275

() ZeUs

2.10

http.setHeader ("Cookie: type=chocolate");
Shello = string.append("Hello"™, " ", "world", "!");

Function names are not case sensitive. So, the function ‘lang.todouble ()’ can be
invoked using ‘1ang.toDouble ()’ Or ‘Lang.ToDouble ()" as well as ‘1ang.todouble()’.

Chapter 6 (Function Reference) describes the various TrafficScript functions.

Escaping Regular Expressions

Several TrafficScript functions take regular expressions as arguments. TrafficScript uses
the PCRE regular expression library.

Regular expressions may contain a number of special characters:

matches any single character

indicates that the previous expression is optional
matches any number of the previous expression
matches the beginning of a string

matches the end of a string

N R N

If you wish to match a literal *.”, or other special character in your regular expression, you
escape it with a *\’ character.

Note: Like many other scripting languages, double-quoted TrafficScript strings use *\" as an
escape character, so to put a regular expression like "~192\.168\.” into a TrafficScript
double-quoted string, you must double-escape the '\’ character:

Sets the regex string as 7192\.168\. ; the two examples
below have the same effect
Sregex = "~192\\.168\\.";
Sregex = '7192\.168\."';
if (string.regexMatch($ip, Sregex)) {
IP is on 192.168.* network

Note that it’s not often necessary to use regular expressions in TrafficScript;

. string.IPMaskMatch (), string.Contains(), string.startsWith () and
string.endsWith () can be used to search strings.

e string.replace() and string.replaceAll () can be used to search-and-replace
within strings.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 36 OF 275

() ZeUs

2.11 Creating new subroutines in TrafficScript

You can create new TrafficScript subroutines to improve the efficiency of your software.
Once created, these routines can be used in rules or procedures just like the predefined
functions.

2.11.1 Syntax

The syntax to create a new subroutine is:

sub function name (Svarl, Svar2)
{
<code>

return "return value"

Subroutines can be called just like you would call any normal function:

Sret = function name(S$foo, $var);

This would return the value given by the subroutine into the variable '$ret'.
Subroutine position and name restrictions

Name restrictions: user subroutine names cannot be the same as the TrafficScript built-
in functions.

Subroutines can be declared above or below where they are used. For example, the
following code will be perfectly correct:

test () ;
sub test ()
{

log.info ("Attention! Test running");

Local variables

Variables in the subroutines are local to that section and won't affect the result when used
out of the subroutine.

For instance, the following lines of code

Svar = "abc";

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 37 OF 275

|
\

i

u“

!
9

sub function ()

{

log.info (Svar) ;

}

function () ;

...will print out an empty string, as $var is not available within the subroutine.
$1 to $9 variables

$1 to $9 are always treated as global variables, so they can be used to return extra data
from subroutines, in addition to the (optional) return statement that returns a single value.

For example, the following code will print "Hello World":

sub greetings ()
{
$1="Hello ";
return "World"
}
Sret = greetings();

log.info ($1 . Sret)

2.12 Request and Response rules

TrafficScript rules are assigned to a virtual server. A rule can be used as a request rule or
a response rule.

e Request rules are executed when the first request data is received from a client. A
request rule can read further data if the client's request is not complete.

Once the request rules complete, a connection to a back-end server is made and
the request data is streamed to the server.

e Response rules are executed when the first data in the response is read from the
back-end server. A response rule can then read further data from the server, and
can flush the current data to the client.

Once the response rules complete, the remaining data is streamed to the client.

2.12.1 Processing multiple requests and responses

If the client sends another request down the same network connection the traffic manager
can be configured to run the request and response rules again against this new request.
This is configured via the run once/run every time setting for each rule in the virtual server
configuration. You can use the request.endsAt () and request.endsWith () functions to

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 38 OF 275

|
\

i

u“

!
9

parse persistent connections that contain multiple requests and responses. Refer to
sections 3.2.1 and 4.6 for more details.

Note that the run once/run every time option is not relevant for HTTP connections. Even
though a client may send several HTTP requests down the same persistent connection,
they are automatically separated into single connections internally.

2.12.2 Specialized protocol handing functions

Processing HTTP

The HTTP protocol is fully understood by the traffic manager. On a new HTTP connection,
request rules are not started until all the HTTP headers have been received. Specialized
TrafficScript functions (such as http.getPath() and http.setHeader ()) are available to
parse and manipulate the request.

When an HTTP response is received from a back-end server, it does not execute the
response rules until it has received all the HTTP headers in the response. Again,
specialized TrafficScript functions (such as http.setResponseHeader (),
http.setResponseCookie ()) are available to manipulate the response.

You cannot use the lower-level connection, request and response functions such as
request.getLine () Or response.set () to modify an HTTP request. Use the equivalent
specialized HTTP functions instead.

Although multiple HTTP requests can be submitted down a single TCP connection (using
keepalives and pipelining), the traffic manager transparently separates these requests and
handles each individually. For this reason, the option to run rules once or every time is
not relevant to HTTP requests.

HTTPS traffic that is decrypted by the traffic manager is handled in exactly the same way.
The HTTP payload requests can be inspected and manipulated just as if they were sent in
plain text.

Other specialized protocols

TrafficScript offers high-level functions for several other protocols, including SIP and RTSP.
Always use the high-level functions to read and write request data where possible, rather
than lower level functions such as request.get () Or response.set ().

2.12.3 Processing other protocols

Other protocols (TCP and UDP based) can be managed using the functions request.get ()
and set () and response.get () and set (), and related functions to read requests.

Note: UDP is a connectionless protocol. To set a UDP response, you should use the
TrafficScript function connection.close($data, 0);.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 39 OF 275

() ZeUs

2.13 The state machine in detail

Receive request —run Request Rules

Stream
Client request
request to server

Server

R Zeus Traffic response <
ien _ erver
Stream Manager
response
toclient
Receive response — run Response Rules
Fig. 4. Process of rules in TrafficScript

2.13.1 Controlling the state machine

The following TrafficScript functions can be used to control the state machine when
processing requests and responses:

Function Notes

pool.use () When used in a request rule, aborts all rules processing
and specify the pool to give the request to.

request.sendResponse () | When used in a request rule, specifies the response to
send to the client. The current request is discarded and

http.sendResponse ()
no data is sent to any back-end servers.

When the request rules finish, the response rules are
run on the provided response.

response.close () In a response rule, close the connection to the server.

When the response rules complete, pending response
data is sent to the client and the traffic manager then
waits for a new request from the client.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 40 OF 275

() ZeUs

request.endsAt ()

request.endsWith ()

In a request rule, use these functions to extract
individual requests from the incoming datastream and
process them synchronously in a request-response
manner.

For some protocols, a client may send several requests
in one go. These functions can be used to process the
requests one-by-one.

request.retry ()

In a response rule, retry the request if possible.

All request data that was read before and during a
request rule is cached. A request can be retried if all
the request data was read and cached; it can't be
retried if data was subsequently streamed between the
client and the server before a response was received.

response.flush ()

In a response rule, flush the current response data.
Use response.get() or response.getLine() to read
further response data.

This function can be used to manually stream data from
the server to the client, ensuring that the response rule
does not complete until the response has completed.

connection.close ()

connection.discard ()

These functions can be used to abort a connection,
optionally providing a response. The abort is
immediate - no further rules are run at either the
request or response stage.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 41 OF 275

f
i

\
\

I
u“

f
9

Sample TrafficScript Rules

3.1 Routing by Content Type

This example inspects the URL in an HTTP request. It decides which pool to send the
request to, based on the value of the URL.

Suppose your website uses a number of different technologies, including Microsoft ASP
pages and Sun®" JSP™ as well as static HTML content. Microsoft Windows® machines serve
the ASP pages, Sun servers handle JSP, and a set of cheap commodity Linux servers serve
the static content. You want to direct your traffic to different servers depending on the
specific content.

Set up a pool for each of these groups called windows, sun and linux respectively. The
following rule directs network traffic according to the type of content.

Spath = http.getPath() ;

if(string.endsWith($path, ".jsp")) {
pool.use("sun");
} else if(string.endsWith(S$path, ".asp")) {

pool.use("windows");
} else {

pool.use("linux");

3.2 Restricting Access Based on the Time of Day

This example only allows access to a particular service during office hours (between 9am
and 6pm, Monday to Friday). It discards all connections that occur outside these times.

Sdayofweek = sys.time.weekDay () ;

Shourofday = sys.time.hour () ;

Sdayofweek: Sunday is 1, Saturday is 7
Shourofday: office hours are between 9am and 5:59%m
if(S$dayofweek == 1 ||
Sdayofweek == |
Shourofday < 9 ||
Shourofday >= 18) {
log.warn("Warning: access out of hours!");

connection.discard() ;

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 42 OF 275

() ZeUs

3.3

In practice, it may be more appropriate to direct restricted traffic to a separate ‘error pool’
of servers rather than just dropping the connection without warning. The servers in the
error pool would be configured to return an appropriate error message before closing the
connection. The procedure for doing this depends on the protocol being balanced.

Customer Prioritization

This example inspects the cookie in an HTTP request. It uses the value of the cookie to
determine which pool to direct the request to. One pool is faster than the other because it
contains machines that are reserved for premium users.

A company has a customer base divided into “gold” and “silver” membership. It wishes to
give priority to the “gold” customers and has five servers, yellow, green, blue, black and

purple.

Two pools are created: standard, for the “silver” customers, containing machines yellow,
green and blue; and premium, for the “gold” customers, which includes all five of the
servers. Thus black and purple are only available to the “gold” customers.

TrafficScript
rules

&7

Standard Pool
(contains 3 nodes)

Premium Pool
(contains 5 nodes)

Fig. 5.

Customer prioritization scheme inserting cookies using TrafficScript

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 43 OF 275

() ZeUs

The site uses a cookie login system, with the customer type encoded in the cookie.
Different membership levels can be detected, and sent to the correct pool:

Scookie = http.getHeader ("cookie");

if(string.contains($cookie, "gold")) {
pool.use("premium");

} else {
pool.use("standard");

3.4 Routing Based on XML Traffic

TrafficScript includes support for parsing XML documents using XPath, an industry-
standard language used to query XML documents.

XML documents are used by SOAP-based protocols such as Web Services, and enable
complex data to be exchanged and understood automatically without user intervention.

An XML document is organized into a tree structure of nodes’. Each node may contain a
piece of data, or other nodes. XPath can navigate through these nodes to extract specific
data from the XML document; this data can then be used to make routing decisions on the
traffic.

The XPath 1.0 specification is available at http://www.w3.0org/TR/xpath .

3.4.1 Example: Google Search Request

The Google™ search engine has a Web Services interface that accepts SOAP requests for
search queries. A request for a search for Zeus Technology would consist of an HTTP POST
containing the following XML body data:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/1999/XMLSchema">
<SOAP-ENV:Body>
<namespl:doGoogleSearch xmlns:namespl="urn:GoogleSearch">
<key xsi:type="xsd:string">googleUniqueID</key>
<g xsi:type="xsd:string"> Technology</q>
<start xsi:type="xsd:int">0</start>
<maxResults xsi:type="xsd:int">10</maxResults>
<filter xsi:type="xsd:boolean">false</filter>
<restrict xsi:type="xsd:string"/>

<safeSearch xsi:type="xsd:boolean">false</safeSearch>

! Note that these are unrelated to the traffic manager back-end nodes.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 44 OF 275

http://www.w3.org/TR/xpath

<lr xsi:type="xsd:string"/>
<ie xsi:type="xsd:string">latinl</ie>
<oe xsi:type="xsd:string">latinl</oe>
</namespl:doGoogleSearch>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note that the SOAP body contains a ‘doGoogleSearch’ node. This contains the parameters
of the search request.

An Internet service may implement or proxy doGoogleSearch requests and the traffic
manager may be used to manage the traffic to this service.

For example, it may be necessary to split doGoogleSearch requests according to the
specified maximum number of results. If maxResults is greater than 100, the request is to
be sent to pool googleLarge; otherwise it should be sent to pool google.

A TrafficScript rule can use the functions =xml.XPath.MatchNodeSet() and
xml.XPath.MatchNodeCount () to query the SOAP request body and test XML nodes:

Read the entire body of the SOAP/HTTP request
Sbody = http.getBody(0);

XML parameters lie in the "urn:GoogleSearch" XML
namespace:

Sgooglens = "xmlns:googlens=\"urn:GoogleSearch\"";

Test for the presence of a "doGoogleSearch" node.
If present, get the value of the "maxResults"

parameter and choose the pool

if (xml.XPath.MatchNodeCount ($body, $googlens,
"//googlens:doGoogleSearch")) {

SmaxResults = xml.XPath.MatchNodeSet ($body, $googlens,
"//googlens:doGoogleSearch/maxResults/text ()");

if (SmaxResults >= 100) {
pool.use("googleLarge");
} else {

pool.use("google");

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 45 OF 275

3

|

|
\

|
U

3.5

/
9

Authenticating User Access

The following rule uses HTTP Basic authentication to ask the remote client for a username
and password. It checks the client’s username, password and IP address using a local web
server running an authentication application.

The rule looks for a header called Authorization. This should contain a string containing
the word Basic, followed by a base-64 encoded string. When decoded, this string is of the

form username:password.

If the string is malformed or the username or password is absent, the rule returns a “401
Authorization Required” message to the client. This will cause the user’s web browser to
prompt them for a username and password.

If a username and password have been supplied, the rule uses these details, together with
the DNS name of the client, to query the local web server using the http.request.get ()
function. It expects a “"200 OK” response from the web server to indicate success. Any
response code other than 200 results in the rule sending the user the response “403
Forbidden”.

Note that if the user is successfully authenticated, the rule performs no positive action with
the request. It will be passed on to any other rules the virtual server is using, or its default
pool.

Determine the username and password, and send a
'401 Authorization Required' header if there isn't

one.

Sauthheader = http.getHeader ("Authorization");

Decode the Authorization header; it starts with
'Basic', followed by a base64 encoded

username:password string

if(string.startsWith($authheader, "Basic ")) {
Sencuserpasswd = string.skip($authheader, 6);

Suserpasswd = string.base64decode (Sencuserpasswd) ;

$i = string.find($userpasswd, ":");
$user = string.substring(Suserpasswd, 0, $i-1);

Spassword = string.skip(Suserpasswd, $i+l);

If the client did not provide an Authorization
header, indicate that authorization is required

if (Suser == "") {

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 46 OF 275

() ZeUs

3.6

http.sendResponse("401 Authorization required",
"text/html", "Please login\n",
"WWW-Authenticate: Basic realm=\"secure

server\"");

Check the supplied username and password by
querying a local access server with the username,

password and remote host.

Srhost = net.dns.resolvelP (connection.getRemoteIP()) ;
Squerystring = "user=" . string.escape(Suser)
"spasswd=" . string.escape(S$password)
"&rhost=" . string.escape($rhost);

http.request.get (
"http://server/auth.cgi?$querystring");

if($1 !'= 200) |
access was denied
http.sendResponse("403 Forbidden",

"text/html", "Access denied\n", "");

The user is allowed access

This rule could be optimized to cache responses from the local web server, using the
data.set () and data.get () functions.

Synchronizing requests and responses

This sample assumes that we are managing a simple line-based protocol. Each request is
one line long, delimited by new-line ('\n'). Each response may be very long, but is finished
by a single line containing a dot (".\n").

This protocol is similar to many simple line-based protocols like POP, IMAP or SMTP,
although they each have more sophisticated ways if indicating when a response has
finished. The protocol is persistent — there may be many requests and responses within a
single connection.

A simple client-first or server-first virtual server can be used to manage this protocol.

Imagine that we wish to intercept a particular request and return a response directly from
the traffic manager without forwarding the request to the back-end server, but we want to

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 47 OF 275

() ZeUs

— — e — — J—
B ——— e

|
\

keep the connection open and forward other requests to the server. In this example, we'll
permit all requests other than "HACKME\n", for which "403 Go Away!\n.\n" will be
returned

A first attempt might be as follows:

get the request

Sreq = request.getlLine();

if (Sreq == "HACKME\n") {

request.sendResponse ("403 Go away!\n.\n");

This simple filter has great potential for being subverted. A determined hacker could:

e Try sending the requests byte-by-byte to fool any parsing code (this would not work
in this case);

e Try sending two requests in one packet - the first is valid, the second is 'HACKME'.
Our filtering code will let the entire packet through;

e Send one request and a partial "HACK" in one packet, then send "ME\n" in a second
packet when he receives the response from the first request. Our sample filter won't
recognise the fragmented "HACKME" request.

To avoid these potential errors, it's necessary to synchronise individual requests,
processing each request in turn and buffering up any additional data for the next request:

get the request
Sreq = request.endsWith("\n");

if (Sreq == "HACKME\n") {

request.sendResponse ("403 Go away!\n.\n");

Using request.endsWith () causes data to be read up to, and including, the "\n'. Just this
data will then be processed, going through the request and response stage of the state
machine. When a response has been received from the server, the next will start to be
processed, which may contain data that was postponed from the previous request.

This simply and effectively guards against attempts to subvert the parser by sending two
requests in one, or by sending partial requests.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 48 OF 275

() ZeUs

3
{

i

il

3.7

f
9

This solution has an unfortunate side effect. Imagine if a user sent two requests in quick
succession; the first request caused the server to send a large response; the second
request was the 'HACKME' which causes the traffic manager to send a response itself.

If the HACKME request is received while the server is still responding to the previous
request, HACKME request will be processed and send a response directly. This response

may be interleaved with the server's response, resulting in a corrupt datastream back to
the client.

The solution is to synchronize responses in the datastream, so that processing of the next
request is delayed until the previous request has completed. This can be achieved with a
simple response rule:

Sres = response.getlLine();
while(Sres != ".\n") {
response.flush(string.len($res));

Sres = response.getLine();

The response rule will not complete until a line containing ".\n" is received. When it
completes, all remaining response data is flushed to the client and the next request will be
processed.

Streaming HTTP responses

The low-level function response.flush () should not be used to manage HTTP responses;
the http.stream.* functions should be used instead.

If you wish to generate or modify an HTTP response, the simplest way to do so is to read
the response in its entirety (using http.getResponseBody ()), manipulate it and then write
it using http.setResponseBody (). However, this can be inefficient when managing large
HTTP responses:

¢ Data is not written to the client until the response rule completes. If it takes time
to read the entire response and manipulate it, this can potentially cause the client
to timeout and close the connection.

e The entire response needs to be managed in memory; this can be very memory-
inefficient. The memory is not discarded until the rule has completed and the data
is written to the client.

As an alternative, you can stream HTTP responses, reading and writing them in smaller
quantities. Response data will be written as soon as it is available, ensuring lower memory
use and better performance.

The following functions manage HTTP streaming:

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 49 OF 275

() ZeUs

Function

Notes

http.stream.

startResponse ()

This function should be called before any data is
written to the client. The headers for the
response as assembled and written to the client.
No response header manipulation can be
performed after this point.

http.stream.

readResponse ()

Reads and returns a portion of the HTTP response
body, limited by length or a delimiter character.

http.stream.

writeResponse ()

Writes the supplied body data to the client, but
holds the connection open for additional body
data if required.

http.stream.

finishResponse ()

Indicates that response streaming has finished.
Rules processing is halted and any remaining
response data is sent to the client.

The following TrafficScript rule processes HTML responses line by line, making a simple

substitution:

1f(

while (

$line =

Sline =

Sstatus = http.getResponseCode () ;
if($status != 200) break;
Stype =

http.getResponseHeader ("Content-Type") ;
Istring.startsWith(Stype,

http.stream.startResponse (

http.stream.writeResponse (

http.stream.finishResponse () ;

http.stream.readResponse (

string.replaceAll($line,

"text/")) break;

S$type);

Srcode,

"\nn)) {
"ZREUS");

2048,
"Zeus",

Sline);

3.8

This sample TrafficScript rule manages incoming FTP connections.

Managing FTP connections

It implements a proxy

for the login stage, waiting until the remote user has provided a suitable username and

password.

This rule should be configured as a 'run every time' request rule:

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 50 OF 275

() ZeUs

Sreq = string.trim(request.endswith("\n"));

if (string.regexmatch($req, "USER (.*)")) {
connection.data.set ("user", $1);
Smsg = "331 Password required for ".$1."!!\r\n";
request.sendresponse (Smsg) ;

break;

if(!string.regexmatch($reqg, "PASS (.*)")) {
Are we connected?
if (connection.getNode()) { break; }
request.sendresponse ("530 Please log in!!\r\n");

break;

Suser connection.data.get ("user");

Spass = $1;

In this case, we'll permit any password that is
the uppercase version of the username

Do your own authentication here; for example,

H= = H H

call a remote server with http.request.get

if(string.uppercase(Suser) != Spass) {
request.sendresponse (
"530 Incorrect user or password!!\r\n");

break;

now, replay the correct request against a new
server instance, disconnecting from any FTP server
we are already connected to

response.close () ;

connection.data.set("state", "connecting");
request.set (

"USER anonymous\r\nPASS ".Suser."\r\n");

select the pool we want...

if (Suser == "ftplzeus.com") {
pool.select ("Zeus FTP pool");

}

if(Suser == "ftp@customer.com") {

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 51 OF 275

() ZeUs

pool.select ("Customer FTP pool");
}
the default pool is 'discard', so other users

are dropped

This rule needs to be configured as a run-every-time response rule:

if (connection.data.get ("state") == "connecting") {
We've just connected. Slurp the first line
(the serverfirst banner), the second line (the
331 need password) and then replace the

serverfirst banner

Sfirst = response.getLine () ;

$second = response.getLine("\n", $1);
Sremainder = string.skip(response.get (), $1);
response.set ($first.Sremainder);

connection.data.set ("state", "");

Remember to configure a server-first banner for the FTP virtual server.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 52 OF 275

Troubleshooting

4.1

4.2

4.3

Overview

Writing and debugging complex TrafficScript rules is an involved process. This chapter
lists some useful techniques.

Checking Syntax

A syntax error occurs if you make an error in your TrafficScript rule that prevents the
traffic manager from fully understanding the rule.

When editing a rule in the UI, you can check the syntax at any time using the Check
Syntax button on the Edit Rule page.

You can also check the syntax of a TrafficScript rule from the command line using the
zeus.zxtm binary as follows:

$ export ZEUSHOME=/usr/local/zeus
$ $ZEUSHOME/zxtm/bin/zeus.zxtm --rulesyntaxcheck rulefile
Compilation failed, with 1 error

Error: line 20: Wrong number of arguments to function pool.use

pool.use();

A

Note that TrafficScript is not case-sensitive. Function names and variables can be referred
to using any combination of case.
Debugging Rules

The TrafficScript function ‘log.info ()’ can be used to log a message to the error log
(ZEUSHOME/1log/errors).

For example, the following code:

if(string.contains(http.getPath(), "root.exe")) {
log.info("Discarding potential nimda attack");

connection.discard() ;

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 53 OF 275

() ZeUs

|
\

i

u“

4.4

f
9

... will append the following message to your error log file:
$ export ZEUSHOME=/usr/local/zeus
$ tail $ZEUSHOME/log/errors

[20/Dec/2008:10:24:46 +0000] INFO rules/RuleName rulelogmsginfo
vservers/VSname Discarding potential nimda attack

You can also inspect your error log file by viewing the ‘Event Log’ on the Zeus Admin
Server.

When you are debugging a rule, you can use log.info () to print out progress messages
as the rule executes. The log.info() function takes a string parameter; you can
construct complex strings by appending variables and literals together using the ‘.’
operator:

Smsg = "Received ".connection.getDatalen()." bytes.";

log.info(Smsg);

The functions log.warn() and log.error () are similar to log.info (). They prefix error
log messages with a higher priority - either “waARN” or "ERROR”. The Event Log viewer can
be used to filter out low-priority messages.

You should be careful when printing out connection data verbatim, because the connection
data may contain control characters or other non-printable characters. You can encode
data using either ‘string.hexEncode () ' Or ‘string.escape()’.

You should use ‘string.hexEncode ()’ if the data is binary, and ‘string.escape ()’ if the
data contains readable text with a small number of non-printable characters.

Request and Response rules

It is very easy to write a request or response rule which can stall a connection. If you call
a function like request.getLine (), the connection will block until it receives another line
of input. If you've mis-parsed the connection and the client or server are not going to
send any more input, the connection will stall indefinitely (until it is timed out).

You must take great care that you correctly parse a protocol if you write a detailed handler
for it. Your implementation of the handler will determine precisely how the protocol is
handled. When developing such a handler, several techniques are useful:

e log.info() can be used to emit verbose debugging information, for example,
when each rule starts and when it ends;

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 54 OF 275

|
|
|
|
’\
\

|
\

i

u“

4.5

!
9

A system call tracer like strace or truss can be used to monitor exactly what data
is being read and written to the network.

The script zxtm/bin/trace in your installation directory can assist with this — run
trace --help for more information.

tcpdump Or ethereal can be used to monitor what the client and server is sending,
but be aware that if a rule is blocked reading from the client, it will not notice that
the server has sent any data.

The connection dump page in the Ul lists all current and some recent connections,
and gives an indication of the state that they are in.

Special note about pool.use and pool.select

The pool.use() and pool.select () TrafficScript functions are used to decide which pool
should be used to send the connection to a back-end server. They each take one
argument, the name of the pool to use.

By default, the pool.use() and pool.select() TrafficScript functions only accept a string
literal as the pool name:

pool.use("my webserver pool");

This allows the traffic manager to inspect a rule and determine precisely which pools are
referenced by any virtual servers that use the rule. This information is used as follows:

To ‘type check’ the usage of a pool, to ensure that only configuration settings
relevant to the protocol the pool is managing are displayed, and to ensure that the
same pool is not used by to virtual servers that manage different traffic protocols.

To determine which pools are in use, so it can monitor the behavior of the nodes.

To display the pools referenced by a Virtual Server, in the configuration summary,
front page and other parts of the UI.

To determine when a pool is no longer used, so that error information can be
removed.

However, in some limited circumstances, it is efficient to use a variable to specify the
desired pool.

if ($Spoolname == "pooll") {
pool.use("pooll");

} else if($poolname == "pool2") {
pool.use("pool2");

} else if($poolname == "pool3") {

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 55 OF 275

() ZeUs

pool.use("pool3");

} else if($poolname == "poold") {
pool.use("poold");

} # etc.

It would be much more preferable to write the following:

pool.use($poolname) ;

You can enable this behavior by enabling the trafficscript!variable_pool_use setting on
the Other Settings section of Global Settings page in the System section of the Admin
Server.

Please be aware that if you do so, the traffic manager will not be able to determine
accurately which pools are referenced by a rule, and this will limit the internal consistency
checks and error monitoring that it performs for those pools.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 56 OF 275

Function Reference

5.1

TrafficScript Core Functions

TrafficScript core functions provide the basic function set for the TrafficScript language,
including support for the core TrafficScript types, mathematical functions, and date and
time manipulation.

The core functions are grouped into several families:

e array.: These functions facilitate the use and manipulation of arrays within
TrafficScript.

e hash.: These functions facilitate the use and manipulation of hashes (or key/value
pairs) within TrafficScript.

e json.: These functions provide the ability to convert between TrafficScript
arrays/hash variables and JavaScript Object Notation (JSON) strings.

e lang.: These functions deal with language-specific tasks like forced type
conversions;

e math.: These functions provide mathematical operations;
o string.: These functions operate on strings and other sequences of data.

e sys.: These functions return operating-system related parameters, such as the
hostname.

e sys.time.: These functions are used to format time values.

Recall that function names are not case sensitive. So, the function ‘1ang.todouble ()’ can
be invoked using ‘1ang.tobouble ()’ or ‘Lang.ToDouble ()" as well as ‘1ang.todouble ()’.

Many functions take parameters and return values with specific types. TrafficScript casts
variables and values to the appropriate type as described in section 2.4.2 (Type Casts in
TrafficScript).

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 57 OF 275

() ZeUs

5.1.1

5.1.2

array.append(arrayl, array2)

Appends each element of array2 to the end of arrayl. Note that this behaviour is different
to that of array.push(), which would add one new element to the end of arrayl containing
array2. The return value of this function can be used as the argument to another function
to perform multiple operations on the same array.

Sample Usage

Append 4, 5 and 6 to the array
Snumbers = [1, 2, 3 1;
array.append(S$numbers, [4, 5, 6]);

Snumbers is now [1, 2, 3, 4, 5, 6]

See also: array.push

array.contains(array, value)

Returns whether or not the supplied array contains the specified value as an element. Note
that it will not match elements inside sub-arrays.

Sample Usage

Sarray = ["one", "two", ["three", "four"] 1;
true

array.contains($array, "one");

false

array.contains ($array, "three");

See also: array.filter

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 58 OF 275

() ZeUs

5.1.3

array.copy(array)

Returns a copy of the supplied array. This is semantically equivalent to " $arraycopy =

$array’, however it will warn if the variable passed to it is not an array.

Sample Usage

Loop around a sorted version of an array without

permanently sorting it

Sarr = ["London", "Berlin", "Lisbon", "Paris"];

foreach($val in array.sort(array.copy(Sarr))) {
log.info ($val);

}

Sarr will be unsorted here

See also: array.create

array.create(size, [default])

Creates a new array of the specified size and optionally fills the array with the default data.

Sample Usage

Create an array of length 20 with all the elements
set to zero.

Szeroarray = array.create(20, 0);

See also: array.resize, array.copy

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 59 OF 275

() ZeUs

5.1.5 array.filter(array, pattern, [flags])

Removes elements from the supplied array that do not match the pattern. The optional
'flags' parameter contains a string of single-letter options. The following options are
supported:

o i', meaning 'case insensitive' - letters in the pattern match both upper and lower
case letters.

¢ 'I' 'meaning negate - elements of the array that match the regular expression are
removed.

The return value of this function can be used as the argument to another function to
perform multiple operations on the same array.

Sample Usage

Get the extension headers for this request
Sheaders = http.listHeaderNames () ;

Sextensions = array.filter(S$headers, "7 X-", "i");

5.1.6 array.join(array, [separator])

Concatenates all the elements of the supplied array into a string separated by the
separator. The elements will be separated by a space if no separator is supplied. Note that
a warning will be printed should the supplied array itself contain any arrays or hashes.

Sample Usage

Print a comma-separated list of names
Snames = ["alice", "bob", "mallory" 1;

log.info(array.join(S$names, ", "));

See also: string.split

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 60 OF 275

() ZeUs

5.1.7 array.length(array)

Returns the length of the supplied array

Sample Usage

See how many HTTP headers there are
Sheaders = http.listHeaderNames () ;
log.info("There are "

array.length(Sheaders)

" headers in this request");

5.1.8 array.pop(array)

Removes the last element of the supplied array and returns it as the result of the function.

Sample Usage

$Sstack = [];

array.push($stack, 3);

array.push($stack, 2);

array.push($stack, 1);

Sstack is now [3, 2, 1 1;

Prints 1 2 3

while (array.length($stack) > 0) {
log.info(array.pop($stack));

See also: array.unshift, array.push, array.shift

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 61 OF 275

() ZeUs

5.1.9 array.push(array, value)

Adds the supplied value to the end of the supplied array. The return value of this function
can be used as the argument to another function to perform multiple operations on the
same array.

Sample Usage

Append 4 to the array
Snumbers = [1, 2, 3 1;

array.push ($numbers, 4);

See also: array.shift, array.unshift, array.pop

5.1.10 array.resize(array, size, [default])

Resizes the supplied array to the specified size. If the size of the array is being increased
and the default parameter is specified then the new elements added to the array will be
set to the default parameter. If the new size is smaller than the original size then the
appropriate number of elements will be removed from the end of the array. The return
value of this function can be used as the argument to another function to perform multiple
operations on the same array.

Sample Usage

We're only interested in the first

10 lines of body data - but fill in the

rest with blank lines if there are fewer

than 10 lines.

Sbody = array.resize(http.getBodyLines (), 10, "");

See also: array.create

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 62 OF 275

() ZeUs

5.1.11 array.reverse(array)

Reverses the elements of the supplied array. The return value of this function can be used
as the argument to another function to perform multiple operations on the same array.

Sample Usage

Sarray = [1, 2, 3, [4, 51 1;
array will be [[4, 51, 3, 2, 1]

array.reverse ($array);

See also: array.sort

5.1.12 array.shift(array)

Removes the first element of the supplied array and returns it as the result of the function.

Sample Usage

Sarray = [1, 2, 3, 4 1;

Empty an array from the front while printing

1ts contents

while(array.length(Sarray) > 0) {
log.info(array.shift($array));

See also: array.unshift, array.push, array.pop

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 63 OF 275

() ZeUs

5.1.13 array.sort(array, [reverse])

Sorts the supplied array alphanumerically. If the reverse parameter is supplied then the
array will be sorted in reverse. The return value of this function can be used as the
argument to another function to perform multiple operations on the same array.

Sample Usage

Sort the keys of a hash before iterating over them
foreach($key in array.sort(hash.keys($Shash))) {
log.info($key . " maps to " . Shash[Skeys]);

}

Sort these numbers alphanumerically

$sorted = array.sort([1, 2, 3, 4, 10, 11]);
The result will be [1, 10, 11, 2, 3, 4]

See also: array.sortNumerical

5.1.14 array.sortNumerical(array, [reverse])

Sort the supplied array numerically in ascending order. If the reverse parameter is
supplied then the array will be sorted in descending order. The return value of this function
can be used as the argument to another function to perform multiple operations on the
same array.

Sample Usage

Sort an array of numbers
Snumbers = [2, 10, "3", "4", 24, "11"];
array.sortNumerical ($Snumbers) ;

Snumbers is now [2, "3", "4", 10, "11", 24]

See also: array.sort

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 64 OF 275

() ZeUs

5.1.15 array.splice(array, offset, length, [values])

Replace elements in the supplied array. Any elements between offset and length will be
removed from the array and any extra values specified after the length parameter will be
inserted into the array at that location. The return value of this function can be used as the
argument to another function to perform multiple operations on the same array.

Sample Usage

Snumbers = [0, 1, 2, 3, 4, 5 1;

Starting from element 2, remove one element
and insert "a" and "b" into the array
array.splice(S$numbers, 2, 1, "a", "b");

Snumbers is now [O, 1, "a", "b", 3, 4, 5]
Starting at element 0, remove 3 elements

array.splice(S$numbers, 0, 3);

Snumbers is now ["b", 3, 4, 5]
See also: array.filter

5.1.16 array.unshift(array, value)

Adds the supplied value to the front of the supplied array. The return value of this function
can be used as the argument to another function to perform multiple operations on the
same array.

Sample Usage

Prepend 1 to the array
Snumbers = [2, 3, 4];

array.unshift ($numbers, 1);

See also: array.shift, array.push, array.pop

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 65 OF 275

() ZeUs

5.1.17 hash.contains(hash, key)
Returns whether the supplied hash contains a particular key.

Sample Usage

See if bob is in the hash of users
and if so, whether his password matches
if (hash.contains($users, "bob")) {
if(Susers["bob"] == S$password) {
Access granted
} else {
Access denied
}

} else {

User does not exist

See also: hash.keys

5.1.18 hash.count(hash)
Returns the number of items in the hash.

Sample Usage

See how many HTTP headers there are

Sheaders http.getHeaders () ;

log.info("There are "
hash.count (Sheaders)

" headers in this request");

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 66 OF 275

() ZeUs

5.1.19 hash.delete(hash)

Deletes the specified key from the hash. The return value of this function can be used as

the argument to another function to perform multiple operations on the same hash.

Sample Usage

Shash = ["orange" => "fruit",
"apple" => "fruit",
"cabbage" => "vegetable",
"pear" => "fruit"];

hash.delete($hash, "cabbage");

keys will be orange, apple and pear

Skeys = hash.keys($hash);

See also: hash.keys

5.1.20 hash.empty(hash)

Removes all the values from the hash. The return value of this function can be used as the

argument to another function to perform multiple operations on the same hash.

Sample Usage

Empty the contents of a hypothetical set object

sub set.empty($set) {
You cannot do '$set = [];' here because that
would be reassigning the input variable
hash.empty($set);

}

set.empty(Smy set);

See also: hash.keys

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 67 OF 275

() ZeUs

5.1.21 hash.keys(hash)

Returns an array containing the keys that map to values in the supplied hash data

structure.

Sample Usage

Get the set of IPs that have connected to the site
Sips = data.get("connected ips");
Sips[request.getRemoteIP ()] = 1;

data.set ("connected ips", $ips);

Sconnected set = hash.keys($ips);

log.info(array.length(Sconnected set)

" unique IPs have connected to the site");

See also: hash.values

5.1.22 hash.values(hash)

Returns an array containing the values that have been mapped to in the hash.

Sample Usage

Add up the values of a hash

Svalues = hash.values(Shash);
Stotal = 0;
foreach($val in $values) {

Stotal += Sval;
}

log.info("The total is " . Stotal);
See also: hash.keys

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 68 OF 275

() ZeUs

5.1.23 json.deserialize(json_string)

Converts the supplied string in JavaScript Object Notation (JSON) into a TrafficScript array
or hash variable. If the supplied string is not in the correct format then a warning will be

printed and the result will be empty.

Sample Usage

Deserialising a JSON array
$json_array = '["element 1", "element 2"]°';
Sarray = Jjson.deserialize($json_array);
Deserialising a JSON hash
$json object = '{ "key 1":"value 1", \
"key 2":["array element"] }';

Shash = json.deserialize($json object);

See also: json.serialize

5.1.24 json.serialize(object)

Converts the supplied array or hash variable into JavaScript Object Notation (JSON). This

format is commonly used to exchange data between online applications.

Sample Usage

Serialising an array

Sarray = ["element 1", "element 2"];
$json _array = json.serialize($array);
Serialising a hash

Shash = ["key 1" => "value 1",

"key 2" => ["array element"]];

$Sjson object = json.serialize(S$hash);
See also: json.deserialize

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 69 OF 275

() ZeUs

5.1.25 lang.assert(condition, message)

If the condition is false, prints a warning to the log with the current line number and
terminates the rule. If the condition is true then no messages will be printed and the rule
will continue as normal.

Sample Usage

Make sure that this rule is only run with
Virtual Servers that are using SSL Decryption.
lang.assert(ssl.isSSL(),

"This rule should only be used \

with decrypted SSL connections");

See also: lang.warn

5.1.26 lang.chr(number)

Converts a number to the corresponding ASCII character. chr() may be used as an alias
for lang.chr().

Sample Usage

Pick a random letter from A - Z

Schar = lang.chr(math.random(26) + 65);

Alternative Name: chr
See also: lang.ord

5.1.27 lang.dump(variable)

Converts the supplied variable into a human-readable string. This function is useful for
printing the contents of arrays and hashes when debugging TrafficScript rules.

Sample Usage

Print the headers of the current HTTP request
log.info(lang.dump(http.getHeaders()));

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 70 OF 275

() ZeUs

5.1.28 lang.isarray(data)

Returns whether or not the supplied data is an array.

Sample Usage

sub passMeAnArray(Sarray) {
Test whether the supplied data is an array
if(!lang.isArray($array)) {

return false;

See also: lang.ishash

5.1.29 lang.ishash(data)

Returns whether or not the supplied data is a hash.

Sample Usage

sub passMeAHash(S$hash) {
Test whether the supplied data is a hash
if(!lang.isHash(Shash)) {

return false;

See also: lang.isarray

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 71 OF 275

() ZeUs

5.1.30 lang.max(param|, param?2)

5.1.31

Returns the maximum value of the two parameters provided. If both parameters are
strings, it uses a string comparison; otherwise, the parameters are promoted to integers
or doubles and compared. max() may be used as a shorthand for lang.max().

Sample Usage

Sr = lang.max(9, 10); # returns 10
$s = lang.max("9", "10"); # returns "9"
Sr = lang.max(2, "4.8"); # returns 4.8
Alternative Name: max
See also: lang.min

lang.min(paraml, param2)

Returns the minimum value of the two parameters provided. If both parameters are
strings, it uses a string comparison; otherwise, the parameters are promoted to integers
or doubles and compared. min() may be used as a shorthand for lang.min().

Sample Usage

$Sr = lang.min(9, 10); # returns 9
$s = lang.min("9", "10"™); # returns "10"
Sr = lang.min(2, "4.8"); # returns 2
Alternative Name: min
See also: lang.max

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 72 OF 275

() ZeUs

5.1.32 lang.ord(string)

Converts an ascii character to an integer. ord() may be used as a shorthand alias for
lang.ord().

Sample Usage

Get the integer value of a character.

Sval = lang.ord("A");

Alternative Name: ord

See also: lang.toString, lang.chr

5.1.33 lang.toArray(values)

Returns an array of the supplied values.

Sample Usage

Sarr = lang.toArray("10", "hello");

See also: lang.toDouble, lang.toString, lang.tolnt

5.1.34 lang.toDouble(value)

Returns the double (floating point) value of its parameter, using the TrafficScript type-
casting rules.

Sample Usage

Sr = lang.toDouble("3.14157"); # returns 3.14157
Sr = lang.toDouble(10); # returns 10
Sr = lang.toDouble(3.14175); # returns 3.14175
Sr = lang.toDouble("!!!"™); # returns 0.0
Alternative Name: toDouble
See also: lang.tolnt, lang.toString

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 73 OF 275

() ZeUs

5.1.35 lang.toHash(values)

Returns an hash of the supplied key value pairs.

Sample Usage

Shash

= lang.toHash("ten", 10, "eleven", 11);

See also:

lang.toDouble, lang.toString, lang.tolnt, lang.toArray

5.1.36 lang.toInt(value)

Returns the integer value of its parameter, using the TrafficScript type-casting rules.

Sample Usage

Sr = lang.toInt("10xxx"); # returns 10
Sr = lang.toInt(3.14157); # returns 3
Sr = lang.toInt(10); # returns 10
Sr = lang.toInt("!!!"); # returns O
Alternative Name: tolnt
See also: lang.toDouble, lang.toString

5.1.37 lang.toString(value)

Returns the string value of its parameter, using the TrafficScript type-casting rules.

Sample Usage

$s = lang.toString(10); # returns "10"
$s = lang.toString(3.14157); # returns "3.14157"
$s = lang.toString("10"); # returns "10"
Alternative Name: toString
See also: lang.tolnt, lang.toDouble, lang.chr, lang.ord

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 74 OF 275

() ZeUs

5.1.38 lang.tochar()

This function is an alias for lang.chr.

Sample Usage

Pick a random letter from A - Z

Schar = lang.tochar(math.random(26) + 65);

Alternative Name: tochar
See also: lang.chr

5.1.39 lang.warn(message)

Prints a warning to the log with the line number that this function call appears on. If strict
error checking is enabled then the rule will abort.

Sample Usage

Sdecoded = string.decrypt($password, "passphrase");
if(!Sdecoded) {

lang.warn("Failed to decrypt string");
} else {

String decrypt succeeded...

See also: lang.assert

5.1.40 math.acos(x)

Calculates the arc cosine of x and returns an angle in radians in the range 0 to pi.

Sample Usage

Sacos = math.acos(0); # returns pi/2 (approx.)
Alternative Name: acos
See also: math.cos

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 75 OF 275

() ZeUs

5.1.41 math.asin(x)
Calculates the arc sine of x and returns an angle in radians in the range -pi/2 to pi/2.

Sample Usage

Sasin = math.asin(0); # returns 0 (approx.)
Alternative Name: asin
See also: math.sin

5.1.42 math.atan(angle)

Calculates the arc tangent of x and returns an angle in radians in the range -pi/2 to pi/2.

Sample Usage

Satan = math.atan(0); # returns 0 (approx.)
Alternative Name: atan
See also: math.tan

5.1.43 math.ceil(value)
Returns the smallest integer greater than or equal to its parameter.

Sample Usage

Sr = math.ceil(6.28); # returns 7

Sr = math.ceil("4"); # returns 4
Alternative Name: ceil
See also: math.floor, math.rint, math.fabs

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 76 OF 275

() ZeUs

5.1.44 math.cos(angle)

Interprets its parameter as an angle in radians and returns its cosine.

Sample Usage

Scos = math.cos(6.28314); # returns 1 (approx.)
Alternative Name: cos
See also: math.sin, math.tan

5.1.45 math.exp(power)

Calculates e raised to the power of its parameter and returns the result.

Sample Usage

Sr = math.exp(math.ln(10)); # returns 10
Alternative Name: exp
See also: math.In, math.pow

5.1.46 math.fabs(value)

Interprets its parameter as a floating point number and returns its absolute value.

Sample Usage

Sr = math.fabs(-6.28); # returns 6.28

Alternative Name: fabs

See also: math.floor, math.ceil, math.rint

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 77 OF 275

() ZeUs

5.1.47 math.floor(value)

Returns the largest integer not greater than its parameter.

Sample Usage

Sr = math.floor(4.001); # returns 4

Sr = math.floor(17); # returns 17
Alternative Name: floor
See also: math.ceil, math.rint, math.fabs

5.1.48 math.In(value)

Returns the natural logarithm of its parameter.

Sample Usage

$1ln = math.ln(2.71828); # returns 1 (approximately)

Alternative Name: In

See also: math.log, math.exp

5.1.49 math.log(value)

Returns the basel0 logarithm of its parameter.

Sample Usage

$log = math.log(100); # returns 2
Alternative Name: log
See also: math.In, math.pow

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 78 OF 275

() ZeUs

5.1.50 math.pow(num, power)

Raises its first parameter to the power of its second parameter and returns the result.

Sample Usage

Sr = math.pow(2, 3); # returns 8
Alternative Name: pow
See also: math.In, math.exp, math.sqgrt

5.1.51 math.random(range)

Returns a pseudorandom integer greater than or equal to zero, and less than its
parameter.

Sample Usage

returns a value in the range 0 to 99

Srand = math.random(100);

Alternative Name: random

5.1.52 math.rint(value)

Rounds its parameter by returning the integer closest to its value.

Sample Usage

Sr = math.rint(4.25); # returns 4

Sr = math.rint(4.75); # returns 5
Alternative Name: rint
See also: math.floor, math.ceil, math.fabs

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 79 OF 275

() ZeUs

5.1.53 math.sin(angle)

Interprets its parameter as an angle in radians and returns its sine.

Sample Usage

$sin = math.sin(6.28314); # returns 0 (approx.)

Alternative Name: sin

See also: math.cos, math.tan

5.1.54 math.sqrt(num)

Returns the square root of its parameter.

Sample Usage
Sroot = math.sqrt(2); # returns 1.414 (approx.)
if(lang.toString(math.sqgrt (== "nan") {

Snum is negative or NaN ...

Alternative Name: sqrt
See also: math.pow

5.1.55 math.tan(angle)

Interprets its parameter as an angle in radians and returns its tangent.

Sample Usage

Stan = math.tan(6.28314);

returns O

(approx.)

Alternative Name: tan

See also: math.sin, math.cos

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 80 OF 275

() ZeUs

5.1.56 string.BERTolnt(string)

Converts a BER compressed integer into an integer.

Sample Usage

$Sr = 200
Sr = string.BERToInt ("\201\110");

Alternative Name: BERToInt

See also: string.intToBER, string.bytesTolnt

5.1.57 string.lreplace(string, search, replacement) - deprecated
This function has been deprecated. Use string.replacel instead.

Replaces the first occurrence of the search string in the supplied string with the
replacement. It is case-insensitive and returns the string with the replacement.

5.1.58 string.lreplaceAll(string, search, replacement) - deprecated

This function has been deprecated. Use string.replaceAlll instead.

Replaces all occurrences of the search string in the supplied string with the replacement. It
is case-insensitive and returns the string with the replacements.

5.1.59 string.append(strl, str2,...)

Returns the result of concatenating all of its inputs together as strings.

Sample Usage

Returns "The answer is 42"

$s = string.append("The ", "answer ", "is " , 42);

Alternative Name: append

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 81 OF 275

() ZeUs

5.1.60 string.base64decode(string)

5.1.61

Decodes a base64-encoded string and returns the result.

Base64 encoding is used for MIME-encoded messages, and in the HTTP Basic Authorization
header.

Sample Usage

Decodes a username and password from HTTP
BASIC authentication

$h =
if(string.startswWith($h,
$h,

string.base64decode (

http.getHeader ("Authorization");

")) |

"Basic

Senc = string.skip(6)7

Suserpasswd = Senc);

log.info("User used: ".Suserpasswd);

Alternative Name: base64decode

See also: string.base64encode, string.hexdecode, string.unescape

string.base64encode(string)

Returns the base64-encoded version of the provided string. This converts each group of
three characters into a 4-character string containing just [A-Za-z0-9+/], and '=' for
padding.

Base64 encoding is used for MIME-encoded messages, and in the HTTP Basic Authorization
header.

Sample Usage

Encodes a username and password for HTTP
BASIC authentication

Senc =
$h =
http.setHeader (

string.baseb64encode ("user:passwd");

"Basic ".S$enc;

$h);

"Authorization",

Alternative Name: base64encode

See also: string.base64decode, string.hexencode, string.escape

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 82 OF 275

() ZeUs

5.1.62 string.bytesToDotted(string)
Converts a network ordered byte string into an IP address.

Sample Usage

The first 4 bytes are the IP address
Sipstr = string.substring(S$Smsg, 0, 3);
log.info("IP is ".string.bytesToDotted(S$ipstr)

)i

Alternative Name: bytesToDotted

See also: string.dottedToBytes, string.bytesTolInt

5.1.63 string.bytesTolnt(string)

Converts a byte string in network order to an integer. The byte string should be either 1, 2

or 4 bytes long.

Sample Usage

Smsg starts with a 2-bytes length

Slenstr = string.substring($msg, 0, 1);
S$len = string.bytesToInt ($lenstr);

Smsg = string.substring($msg, 2, 2+S$len-1);

Alternative Name: bytesTolnt

See also: string.intToBytes, string.bytesToDotted, string.BERTolInt

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 83 OF 275

() ZeUs

5.1.64 string.cmp(strl, str2)

Compares its two parameters as strings in a case-sensitive manner. It returns a negative
value if strl is less than str2; zero if they are equal, and a positive value if strl is greater

than str2.

Sample Usage

if(
Sa is

}

if(
$a is

string.

string.

cmp ($a, "HTTP/1.0") == 0) {
"HTTP/1.0"
cmp ($a, $b) < 0) {

less than $b

Alternative Name:

See also:

cmp
string.icmp

5.1.65 string.contains(haystack, needle)

Searches for the provided string (the needle) in the given source (the haystack).

It returns 1 if the 'needle' was found, or 0 otherwise.

Sample Usage

if (string.contains(S$cookie,

"chocolate")) {

The cookie contains chocolate ...

Alternative Name:

See also:

contains

string.containsl, string.find, string.findr, string.startsWith,
string.endsWith

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 84 OF 275

() ZeUs

5.1.66 string.containsl(haystack, needle)

Searches for the provided string (the needle) in the given source (the haystack). It is
case-insensitive.

It returns 1 if the 'needle' was found, or 0 otherwise.

Sample Usage

Alternative Name:

See also:

if(string.containsI($path, "danger"))

The path contains danger ...

{

containsI

string.contains, string.findI, string.startsWithI, string.endsWithI

5.1.67 string.count(haystack, needle, [start])

Searches from the start of a string, counting the number of times that the provided search
string (the needle) is found inside the given string (the haystack). An optional parameter
can specify the start position for the search.

It returns the number of times that the string is found.

Sample Usage

Alternative Name:

See also:

Returns 2
Sr = string.count("This is it!", "is");
Returns 1, no overlaps allowed

$s = string.count("ooo", "oo");

count

string.find, string.contains

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 85 OF 275

() ZeUs

5.1.68 string.decrypt(string, passphrase)

Returns the decrypted version of a string that has previously been encrypted using
string.encrypt(). The passphrase supplied must match that given to string.encrypt(),
otherwise the decoding will fail.

An empty string is returned if the decrypt or the integrity check fails.

Sample Usage

Decrypt the 'kart' cookie
Scookie = http.getcookie("kart");
if(Scookie != "") {

Scookie = string.decrypt($cookie, S$passphrase);

if ($cookie == "") {
log.warn("User modified kart cookie");
http.removecookie ("kart");

} else {

http.setcookie("kart", S$cookie);

Alternative Name: decrypt
See also: string.encrypt

5.1.69 string.dottedToBytes(IP address)

Converts an IP address to a network order byte string.

Sample Usage

Prepend the client IP onto $msg
Sip = request.getRemotelIP () ;
Smsg = string.dottedToBytes($ip) .S$msg;

Alternative Name: dottedToBytes

See also: string.bytesToDotted, string.intToBytes

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 86 OF 275

() ZeUs

5.1.70 string.drop(string, count)

Returns all but the last 'count' characters from the end of the provided string. An empty
string will be returned if 'count’ is greater than the length of the original string.

Sample Usage

returns

Ss =

"www.example"

string.drop ();

"www.example.com", 4

Alternative Name: drop

See also: string.skip, string.trim

5.1.71 string.encrypt(string, passphrase)

Encrypts a string using the provided pass phrase. The returned string is encrypted using
the AES block cipher, using an expanded form of the passphrase as the cipher key. A MAC

is also added to ensure the integrity of the string.

This is open to replay attacks, and as such, should not be used to encrypt sensitive data,

such as credit card details.

Sample Usage

Encrypt the 'kart' cookie
Scookie =

1f(

http.getresponsecookie("kart");
Scookie != "") {

Scookie =

string.encrypt ($cookie,

Spassphrase) ;

http.setresponsecookie("kart",

Scookie

)

Alternative Name:

encrypt

See also: string.decrypt

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 87 OF 275

() ZeUs

5.1.72 string.endsWith(string, suffix)

Returns 1 if the provided string ends with the given suffix, and 0 otherwise.

Sample Usage

if(string.endsWith(Surl, ".cgi")) {
Request is for a CGI script ...

Alternative Name: endsWith

See also: string.endsWithl, string.startsWith, string.contains

5.1.73 string.endsWithl(string, suffix)

Returns 1 if the provided string ends with the given suffix, and 0 otherwise. It is case-
insensitive.

Sample Usage

if (string.endsWithI($path, "victory")) {
The path ends with victory

Alternative Name: endsWithI

See also: string.endsWith, string.startsWithI, string.containsl

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 88 OF 275

() ZeUs

5.1.74 string.escape(string)

Returns a percent-encoded version of its parameter.

Control characters and spaces (character value <= 32) and '%' characters are each

replaced by a '%' symbol, followed by their 2-digit hex value.

Sample Usage

returns "Hello%20World!%0D%O0A"

Ss

"Hello World!\r\n");

string.escape (

Alternative Name: escape

See also:

string.unescape, string.hexencode, string.regexescape,

string.urlencode

5.1.75 string.extractHost(string)

Returns the host part of the supplied address if it is a valid IP or hostname. Otherwise the

empty string is returned.

Sample Usage

sub lookup proxy(Spath) ({
Code to map a path to a node
}
Send certain requests to an external server

Sforward = lookup proxy(http.getPath());

if(S$Sforward
&& Shost = string.extractHost(S$forward)) {
if(!$port = string.extractPort($forward)) {
Sport = 80;
}
pool.use("External", Shost, S$port);

Alternative Name:

See also:

extractHost

string.extractPort

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 89 OF 275

() ZeUs

5.1.76 string.extractPort(string)

Returns the port part of the supplied address if both the host and port of the supplied
address are valid. Otherwise the empty string is returned.

Sample Usage

Snext = sip.getRequestHeader ("Route"
string.regexmatch(Snext, "*");

Snext = $1;

if($port = string.extractPort(S$next
if (Sport < 1024) {

Don't forward the message

Get the SIP request's next destination

);

Get the port number of the destination
)

{

sip.sendResponse ("403", "Forbidden");

Alternative Name: extractPort

See also: string.extractHost

5.1.77 string.find(haystack, needle, [start])

Reports whether the provided search string (the needle) is contained inside the given
string (the haystack). An optional parameter can specify the start position for the search.

It returns the location of the first instance of the search string; note that character

positions start at 0.

If it could not find the search string, it returns -1.

Sample Usage

Sr = string.find("This is it!"™, "is"); # Returns 2
Alternative Name: find
See also: string.findI, string.findr, string.contains

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 90 OF 275

() ZeUs

5.1.78 string.findl(haystack, needle, [start])

Reports whether the provided search string (the needle) is contained inside the given
string (the haystack). An optional parameter can specify the start position for the search.

It is case-insensitive.

It returns the location of the first instance of the search string; note that character

positions start at 0.

If it could not find the search string, it returns -1.

Sample Usage

Returns 0
Sr =

string.findI (

"The way of the warrior",

"irhe"

) ;

Alternative Name:

See also:

findI

string.find, string.containsl

5.1.79 string.findr(haystack, needle, [distanceFromEndToStart])

Searches backwards from the end of a string, determining whether the provided search
string (the needle) is contained inside the given string (the haystack). An optional
parameter can specify the start position for the search, measured from the end of the
string (so setting it to 1 skips the last character in the string).

It returns the location of the last instance of the search string; note that character

positions start at 0.

If it could not find the search string, it returns -1.

Sample Usage

Returns 8
Sr =
Returns 5
Sr =

string.findr("This is it!",

string.findr (

(the '"i' in 1it)

nwimn
v

(the in is)

"This is it!"™, "i",

)

3

) ;

Alternative Name:

See also:

findr

string.find, string.contains

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 91 OF 275

() ZeUs

5.1.80 string.hash(string)

Returns a number representing a hash of the provided string. The returned value should
not be relied on to be consistent across different releases of the software.

Sample Usage

’

Shash = string.hash(http.getRawURL (

))
connection.setPersistenceKey(Shash % 1000);

Alternative Name: hash

5.1.81 string.hashMD5(string)

Returns the MD5 hash of the provided string. The returned string will be 16 bytes long,
and may contain non-printable characters.

Sample Usage

Shash = string.hashMD5($data);

Alternative Name: hashMD5

See also: string.hexencode, string.hashSHA1, string.hashSHA256,
string.hashSHA384, string.hashSHA512

5.1.82 string.hashSHAI (string)

Returns the SHA1 hash of the provided string. The returned string will be 20 bytes long,
and may contain non-printable characters.

Sample Usage

Shash = string.hashSHALl ($data);

Alternative Name: hashSHA1

See also: string.hexencode, string.hashMD5, string.hashSHA256,
string.hashSHA384, string.hashSHA512

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 92 OF 275

() ZeUs

5.1.83 string.hashSHA256(string)

Returns the SHA-256 hash of the provided string. The returned string will be 32 bytes
long, and may contain non-printable characters.

Sample Usage

Shash = string.hashSHA256($data);

Alternative Name: hashSHA256

See also: string.hexencode, string.hashMD5, string.hashSHA1,
string.hashSHA384, string.hashSHA512

5.1.84 string.hashSHA384(string)

Returns the SHA-384 hash of the provided string. The returned string will be 48 bytes
long, and may contain non-printable characters.

Sample Usage

Shash = string.hashSHA384 ($data);

Alternative Name: hashSHA384

See also: string.hexencode, string.hashMD5, string.hashSHA1,
string.hashSHA256, string.hashSHA512

5.1.85 string.hashSHAS512(string)

Returns the SHA-512 hash of the provided string. The returned string will be 64 bytes
long, and may contain non-printable characters.

Sample Usage

Shash = string.hashSHA512($data);

Alternative Name: hashSHA512

See also: string.hexencode, string.hashMD5, string.hashSHA1,
string.hashSHA256, string.hashSHA384

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 93 OF 275

() ZeUs

5.1.86 string.hexTolnt(string)

Converts a hexadecimal number to an integer. Returns the first valid hexadecimal value
found in the string, or 0. A prefix of "0Ox" is accepted, but not required. Negative numbers
are also valid.

Sample Usage

Returns 10.
Sint = string.hexToInt("0000a"™);

See also: string.intToHex

5.1.87 string.hexdecode(encoded string)

Returns the hex-decoded version of the provided string. This interprets each character pair
as a 2-digit hex value, replacing it with the corresponding 8-bit character. It does not
verify that the original string was correctly encoded.

Sample Usage

returns "hello"

$s = string.hexdecode ("68656C6C6F") ;

Alternative Name: hexdecode

See also: string.hexencode, string.base64decode, string.unescape

5.1.88 string.hexencode(string)

Returns the hex-encoded version of the provided string . This converts each character into
a two-character hex representation, doubling the length of the string.

Sample Usage

Returns "68656C6C6F"

$s = string.hexencode("hello");

Alternative Name: hexencode

See also: string.hexdecode, string.base64encode, string.escape

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 94 OF 275

() ZeUs

5.1.89 string.htmldecode(encodedstring)

Returned the HTML-decoded version of a string, converting symbols such as < and
"

Sample Usage

Sbody = string.htmldecode(http.getBody(0));

Alternative Name: htmldecode

See also: string.htmlencode

5.1.90 string.htmlencode(string)

Returns the encoded version of the supplied string to make it safe for including in HTML. It
converts '<' to < '>' to >, "' to " and '&' to &. Control characters are hex-
encoded.

Sample Usage

Shtml = string.htmlencode(Sparameter);
Alternative Name: htmlencode
See also: string.htmldecode, string.urlencode

5.1.91 string.icmp(strl, str2)

Compares its two parameters as strings in a case-insensitive manner. It returns a negative
value if strl is less than str2; zero if they are equal, and a positive value if strl is greater
than str2.

Sample Usage

if(string.icmp($a, "Content-Length") == 0) {
$a is "Content-Length"

Alternative Name: icmp
See also: string.cmp

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 95 OF 275

() ZeUs

5.1.92 string.insertBytes(string, insertion, offset)

5.1.93

Inserts a string into another string at the supplied offset, and returns the resulting string.
If offset < 0, or offset > length(string), the original string is returned unchanged. If offset
== 0 the insertion string is prepended; if offset == length(string) the insertion string is

appended.

Sample Usage

Sr = "he was Othello"

Sr = string.insertbytes("hello", " was Othe", 2);

Sr = "hello world"

Sr = string.insertbytes("hello", " world", 5);

Sr = "I say hello"

Sr = string.insertbytes("hello", "I say ", 0);
Alternative Name: insertBytes
See also: string.replaceBytes

string.intToBER(number)

Converts an integer into a BER compressed integer (which is a variable-length binary
string encoding).

Sample Usage

Sr
Sr =

= "\201\110"
string.intToBER(200);

Alternative Name: intToBER

See also:

string.BERToInt, string.intToBytes

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 96 OF 275

() ZeUs

————— L —

5.1.94 string.intToBytes(number, [width])

Converts an integer to a network order byte string of the specified width. Only widths of 1,
2 and 4 are permitted, and the width defaults to 4 if it is not supplied.

Sample Usage

Prepend $msg with its length, as a 4-byte int

string.insertBytes (Smsg,

string.intToBytes (string.len($msg)),
0)
Alternative Name: intToBytes
See also: string.bytesTolnt, string.bytesToDotted, string.intToBER

5.1.95 string.intToHex(string)

Converts an integer into a hexadecimal string.

Sample Usage

Returns "0000cafe"
Shex = string.intToHex (51966) ;

See also: string.hexTolnt

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 97 OF 275

() ZeUs

5.1.96 string.ipmaskmatch(IP Address, CIDR IP Subnet)

Returns 1 if the provided IP address is contained in the CIDR IP Subnet, and 0 otherwise.

It interprets its first parameter as a string containing an IP address, and its second
parameter as an CIDR IP subnet. CIDR IP subnets can be of the form "10.0.1.0/24",

"10.0.1.0/255.255.255.0", "10.0.1." or "10.0.1.1".

For IPv6, the standard notation of "2001:200:0:8002::/64" is supported.

Sample Usage

if (string.ipmaskmatch($ip, "10.0.0.0/8"
IP is in the 10.*.*.* subnet ...

)

)

{

Alternative Name: ipmaskmatch

See also: string.validIPAddress

5.1.97 string.left(string, count)

Returns the first 'count' characters of the provided string. An empty string will be returned

if 'count' is less than or equal to zero.

Sample Usage

returns "#!"

$s = string.left("#!/bin/sh",

2

);

Alternative Name: left
See also: string.skip

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 98 OF 275

() ZeUs

5.1.98 string.len(string)
Interprets its parameter as a string and returns its length (in bytes).

Sample Usage

$len = string.len("Hello world!"); # returns 12

Alternative Name: len

5.1.99 string.length(string)
This function is an alias for string.len.

Sample Usage

S$len = string.length("Hello world!"); # returns 12

Alternative Name: length

See also: string.len

5.1.100 string.lowercase(string)
Converts all characters in the provided string to lowercase and returns the result.

Sample Usage

$s = string.lowercase ("AbCdEfG"); # Returns "abcdefg"
Alternative Name: lowercase
See also: string.uppercase

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 99 OF 275

() ZeUs

5.1.101 string.normalizelPAddress(string)

Returns a unique string representation of an IP address: all leading zeros are removed,
and for IPv6 addresses the first occurrence of blocks consisting entirely of zeros is replaced
by "::". This normal form can be used to compare IP addresses without ambiguity and is
also the form used by TrafficScript functions returning IP addresses. If the string is not a
valid IP address, the empty string is returned.

Sample Usage

Sremote ip = request.getremoteip();

Sclient = string.normalizeipaddress (
"2001:0:0157::0:000a");

Sclient is now "2001::157:0:0:0:0:6a"

if (Sremote ip == $Sclient) {

do something specific for this client

Alternative Name: normalizeIPAddress
See also: string.validIPAddress
5.1.102 string.randomBytes(length)

Returns a string of the supplied length filled with random bytes.

Sample Usage

Get a string 16 bytes long filled with random data
Sstr = string.randomBytes(16);

Alternative Name: randomBytes

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 100 OF 275

5.1.103 string.regexescape(string)

Returns a version of its parameter suitable for using inside a regex match as a string
literal.

All characters in the string that aren't a-z, A-Z, 0-9 or '_' are escaped using a backslash.

Sample Usage

Sstr = "10.100.230.5";

Sescaped = string.regexescape($str);

if (string.regexmatch($line, Sescaped)) {
log.info("Line matched: " . S$str);
}
Alternative Name: regexescape
See also: string.escape

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 101 OF 275

() ZeUs

5.1.104 string.regexmatch(string, regex, [flags]))

Performs a regular expression match on the supplied string. If the regular expression
'regex' contains bracketed sub-expressions, then the variables $1 ... $9 will be set to the
matching substrings.

Note that the '\' character is an escape character in TrafficScript strings enclosed with
double quotation marks. If you need to put a literal '\' in a regular expression, you must
escape it as "\\' or enclose the string in single quotation marks. To match a literal string
inside a regular expression use the string.regexEscape function.

The optional 'flags' parameter contains a string of single-letter options. The following
options are supported:

¢ 'i', meaning 'case insensitive' - letters in the pattern match both upper and lower
case letters.

It returns 1 if matched, and 0 otherwise.

Sample Usage

$id = "user=Joe, password=Secret";

if (string.regexmatch (

$id, "“user=(.%*), password=(.*)S$")) {
log.info("Got UserID: ".$1.", Password: ".$2);
}
Sname = "Name(Bob)";
string.regexmatch(S$name, 'Name\ ((\S+) \)');

log.info($1); # prints Bob

Alternative Name: regexmatch

See also: string.wildmatch, string.regexsub, string.regexescape

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 102 OF 275

() ZeUs

5.1.105 string.regexsub(string, regex, replacement, [flags])

Performs a regular expression match on the supplied string, then replaces each matching
substring with the supplied replacement. The replacement string may contain $1 .. $9
substitutions, which reference bracketed sub-expressions in the regular expression.

Note that the '\' character is an escape character in TrafficScript strings enclosed with
double quotation marks. If you need to put a literal '\' in a regular expression, you must
escape it as "\\' or enclose the string in single quotation marks. To match a literal string
inside a regular expression use the string.regexEscape function.

The optional 'flags' parameter contains a string of single-letter options. The following
options are supported:

e 'g', meaning 'global replace' - apply the regex pattern as many times as possible.

o i', meaning 'case insensitive' - letters in the pattern match both upper and lower
case letters.

string.regexsub() returns the string with the replacements.

Sample Usage

Rewrite incoming URL

Surl = string.regexsub (Surl, "*/(.*)/secure",
"/$1l/private") ;

Remove cookieless session from URL

e.g. "/ (sessionid) /app/index" => "/app/index"

$url = string.regexsub(S$url, '/\(\S+\)/', "/");

Alternative Name: regexsub

See also: string.regexmatch

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 103 OF 275

() ZeUs

5.1.106 string.replace(string, search, replacement)

Replaces the first occurrence of the search string in the supplied string with the

replacement. It is case-sensitive and returns the string with the replacement.

Sample Usage

Rewrite incoming URL

Surl = string.replace(Surl, "/secure", "/private");
Alternative Name: replace
See also: string.replacel, string.replaceAll, string.replaceAlll
5.1.107 string.replaceAll(string, search, replacement)

Replaces all occurrences of the search string in the supplied string with the replacement. It

is case-sensitive and returns the string with the replacements.

Sample Usage

Rewrite incoming URL

Surl = string.replaceAll ($url, "/in", "/out");

Alternative Name: replaceAll
See also: string.replaceAlll, string.replace, string.replacel
5.1.108 string.replaceAlll(string, search, replacement)

Replaces all occurrences of the search string in the supplied string with the replacement. It

is case-insensitive and returns the string with the replacements.

Sample Usage

Rewrite incoming URL

Surl = string.replaceAllI ($Surl, "/in", "/out");

Alternative Name: replaceAlll

See also: string.replaceAll, string.replacel, string.replace

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 104 OF 275

() ZeUs

5.1.109 string.replaceBytes(string, replacement, offset)

Replaces a portion of a string with a replacement string at the supplied offset. It returns a
modified version of the original string of the same length as the original with the
appropriate bytes replaced from the replacement string.

If offset < 0, or offset > length(string), or length(replacement) == 0,
string.replaceBytes returns the original string.

Sample Usage

Sr = "hi 1lo"

Sr = string.replaceBytes("hello", "i ", 1);

Sr = "helwo"

Sr = string.replaceBytes("hello", "world", 3);

Alternative Name: replaceBytes
See also: string.insertBytes
5.1.110 string.replacel(string, search, replacement)

Replaces the first occurrence of the search string in the supplied string with the
replacement. It is case-insensitive and returns the string with the replacement.

Sample Usage

Rewrite incoming URL

Surl = string.replacel ($url, "/secure", "/private");
Alternative Name: replacel
See also: string.replace, string.replaceAlll, string.replaceAll

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 105 OF 275

() ZeUs

5.1.111 string.reverse(string)

Returns the characters of a string in reverse order.

Sample Usage

Sc = string.reverse("esrever"); # Returns "reverse"
Alternative Name: reverse
5.1.112 string.right(string, count)

Returns the last 'count' characters of the provided string. An empty string will be returned
if 'count' is less than or equal to zero.

Sample Usage

returns "sh"

$s = string.right("#!/bin/sh", 2);

Alternative Name: right
See also: string.drop
5.1.113 string.skip(string, count)

Returns all but the first 'count' characters from the input string. An empty string will be
returned if 'count' is greater than the length of the original string.

Sample Usage

returns "/bin/sh"

$s = string.skip("#!/bin/sh", 2);

Alternative Name: skip

See also: string.drop, string.trim

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 106 OF 275

() ZeUs

5.1.114 string.split(string, [separator])

Returns an array containing the substrings of the supplied string that are delimited by the
separator. The separator defaults to a space character, so applying this method to a string
without supplying the separator character will return an array containing all the individual

words in the string.

Sample Usage

Swords = string.split(http.getResponseBody ());
log.info("There were " . array.length($words)

" words in the response");

See also: array.join
5.1.115 string.sprintf(format string, arguments)

Behaves like the C library sprintf() function. Only %s, %c, %d and %f are supported. The
function returns the generated string.

Sample Usage

Stext = string.sprintf (
"Apples: %3d Oranges: %3d\n",

Sapples, S$Soranges);

Alternative Name: sprintf
See also: string.append

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 107 OF 275

() ZeUs

5.1.116 string.startsWith(string, prefix)

Returns 1 if the provided string starts with the given prefix, and 0 otherwise.

Sample Usage

if(string.startsWith(Surl, "http://"))

URL is of the form http://host/uri ...

{

Alternative Name: startsWith
See also: string.startsWithl, string.endsWith, string.contains
5.1.117 string.startsWithl(string, prefix)

Returns 1 if the provided string starts with the given prefix, and 0 otherwise. It is case-

insensitive.

Sample Usage

if(string.startsWithI(S$path, "/tea"))
The path starts with tea ...

{

Alternative Name: startsWithlI
See also: string.startsWith, string.endsWithlI, string.containsI
5.1.118 string.substring(string, base, end)

Returns the substring starting at character position 'base' and ending at position 'end'.

Note that character positions start at 0, and the end position is inclusive.

Sample Usage

Set $s to "is is a"

$s = string.substring("This is a string",

2,

8

)

Alternative Name: substring

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 108 OF 275

() ZeUs

5.1.119 string.trim(string)

Returns the result of removing leading and trailing white space (and control characters)
from its input

Sample Usage

$s = string.trim(" 1234 "); # returns "1234"

Alternative Name: trim

See also: string.skip, string.drop

5.1.120 string.unescape(escaped string)
Returns the escape-decoded version of its parameter.

%-encoded characters are replaced with their decoded versions. %u-encoded characters
are replaced with their UTF-8 representation. If there are illegal digits which cannot safely
be converted, the variable $1 is set to 0 and the result contains '_' in place of the '%’".
Such malicious %-escaped URLs are a common way of attacking unassuming servers or
applications, and by handling them in this way, the attack is thwarted, but some

information about a suspicious request is retained.

Sample Usage

returns "\r\nlO00%"

$s = string.unescape ("$0D$0A100%25") ;

returns "something BGelse"

$s = string.unescape ("something%BGelse") ;
returns "file.ida"

$s = string.unescape ("file.%u0069%u0064%u0061") ;

Alternative Name: unescape

See also: string.escape, string.hexdecode

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 109 OF 275

() ZeUs

5.1.121 string.uppercase(string)

Converts all characters in the provided string to uppercase and returns the result.

Sample Usage

$s = string.uppercase ("aBcDeFg"); # Returns "ABCDEFG"

Alternative Name: uppercase

See also: string.lowercase

5.1.122 string.urlencode(string)

Returns the URL-encoded version of the supplied string to make it safe for including in
URLs. It converts unsafe characters to percent+hex form.

Sample Usage

Surl = string.urlencode($parameter);
Alternative Name: urlencode
See also: string.unescape, string.htmlencode

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 110 OF 275

() ZeUs

5.1.123 string.validIPAddress(string)

Returns 4 if the string provided is an IPv4 address, 6 if it is an IPv6 address and O if it is

not a valid IP address.

Sample Usage

if(4 == Sipversion) {

do something specific to IPv4
} else if(6 == S$Sipversion) {

do something specific to IPv6
} else {

error: not a valid IP address

Sipversion = string.validIPAddress ($x

)

Alternative Name: validIPAddress
See also: string.ipmaskmatch
5.1.124 string.wildmatch(string, pattern)

Performs a shell-like wild match on the supplied string. The pattern may contain the
wildcard characters '?' (which matches a single character) and '*' (which matches any

substring).

It returns 1 if matched, and 0 otherwise.

Sample Usage

Surl = http.getPath () ;
if(string.wildmatch($url, "*.cgi")

Is a request for a CGI script ...

)

{

Alternative Name: wildmatch

See also: string.regexmatch

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE |11 OF 275

() ZeUs

5.1.125 string.gmtime.parse(str)

Parses the supplied string as a time stamp and returns the time in seconds since the epoch
(1st Jan 1970). Dates before the epoch or after 2038 will produce unexpected results.

Note: Timezone information contained inside the time string is ignored. The time is always
assumed to be in GMT.

Sample Usage

Parse a string into unix time format

Sstr = "Tue, 21 Oct 2008 13:44:26 GMT";

Stime = string.gmtime.parse($str);
See also: sys.gmtime.format
5.1.126 sys.domainname()

Returns the domain name of the host machine. For example, if the machine is named
"serverl.example.com", sys.domainname() will return "example.com".

Sample Usage

Sdomainname = sys.domainname () ;
Alternative Name: domainname
See also: sys.hostname
5.1.127 sys.getenv(variable)

Returns the named environment variable, or the empty string if the environment variable
does not exists.

Sample Usage

$zeushome = sys.getenv("ZEUSHOME") ;

Alternative Name: getenv

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 112 OF 275

() ZeUs

5.1.128 sys.getpid()

Returns the process id of the current process.

Sample Usage

Smypid = sys.getpid() ;

Alternative Name: getpid

5.1.129 sys.hostname()

Returns the hostname of the host machine. For example, if the machine is named
"serverl.example.com", sys.hostname() will return "serverl".

Sample Usage

Shostname = sys.hostname () ;
Alternative Name: hostname
See also: sys.domainname

5.1.130 sys.time()

Returns the current system time as the number of seconds since midnight, 1/1/1970.

Sample Usage

Sunixtime = sys.time () ;
Alternative Name: time
See also: sys.timeToString, sys.localtime.format, sys.gmtime.format,

sys.time.highres

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 113 OF 275

() ZeUs

’\
\

f

Q“
\|
\

i

5.1.131

9

sys.timeToString(unixtime)

Takes the time in seconds since midnight, 1/1/1970 and if the optional unixtime parameter
is provided, returns a formatted string representing that time. If the unixtime parameter is
not given, it returns the current time as a formatted string.

Sample Usage

Alternative Name:

Returns

Stm = sys.timeToString(sys.time ()

"[01/Feb/2004:12:24:51 +20001"

) ;

timeToString

See also: sys.time
5.1.132 sys.gmtime.format(format, unixtime)

Converts the time into a string format. This function converts using GM time - see

sys.localtime.format() to convert using localtime.

Format Meaning Format
%a Mon Tue Wed ... %A
%b Jan Feb Mar ... %B
%d Day of month "01"-"31" %D
%e Day of month " 1"-"31" %H
%h Equivalent to %b %I
. Julian day of the year "001"
0, 0,
A o 366" om
%M Minute "00" - "59" %n
%p AM/PM Y%or
%R %H:%M %S
%t Tab character %T
%u E)z;y of week (1 = Monday, 7 oW
= Sunday)
Year (without century) "00"
0, 0,
Y o mggr oY
%Z Time zone ("GMT") %%

Meaning
Monday Tuesday ...
January February ...
%m/%d/%y
Hour of day "00-23"
Hour of day "01" - "12"

Month of year "01" - "12"

Newline character

Time in %1:%M:%S [AM|PM]
Seconds, output as a number between
"00" and "61"

%H:%M:%S

Day of week (0 = Sunday, 6 =
Saturday)

Year "0000" to "9999"

Il%ll

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE |14 OF 275

() ZeUs

If supplied, the optional 'unixtime' parameter specifies the number of seconds since
midnight 1/1/1970, and the function returns a formatted string representing that time. If
the 'unixtime' value is not provided, the current time will be returned.

Sample Usage

Return a time suitable for an HTTP header
e.g. Mon, 14 Aug 2006 12:39:01 GMT

Sstr = sys.gmtime.format("%a, %d $b %Y T GMT");

Alternative Name:

See also:

gmtime.format

sys.time, sys.time.seconds, sys.time.minutes, sys.time.hour,

sys.time.weekday, sys.time.monthday, sys.time.month,

sys.time.year, sys.time.yearday, sys.localtime.format,

string.gmtime.parse

5.1.133

sys.localtime.format(format, unixtime)

Converts the time into a string format. This function converts using localtime - see
sys.gmtime.format() to convert using GMT.

Format Meaning

%a Mon Tue Wed ...

%b Jan Feb Mar ...

%d Day of month "01"-"31"
%e Day of month " 1"-"31"

Format Meaning
%A Monday Tuesday ...

%B January February ...
%D %m/%d/%y

%H Hour of day "00-23"

%h Equivalent to %b %I Hour of day "01" - "12"

%]j fgl.'.ggg?y of the year "001 %m Month of year "01" - "12"

%M Minute "00" - "59" %n Newline character

%p AM/PM %r Time in %1:%M:%S [AM|PM]

%R 9%H:-06M %S §ec'(l)nds, .(.)UtP.Ut as a number between
00" and "61

%ot Tab character %T %H:%M:%S

%u Day of week (1 = Monday, 7 oW Day of week (0 = Sunday, 6 =

0 = Sunday) ° Saturday)
%y t\ge.f’gé,‘."’ ithout century) "00" o/ vear "0000" to "9999"
%Z Time zone (from $TZ) %% "%"

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 115 OF 275

() ZeUs

If supplied, the optional 'unixtime' parameter specifies the number of seconds since
midnight 1/1/1970, and the function returns a formatted string representing that time. If
the 'unixtime' value is not provided, the current time will be returned.

Sample Usage

Return a formatted string
e.g. Mon, 14 Aug 2006 12:39:01 EST
Sstr = sys.localtime.format("%a, %d $b %Y %T EST");

Alternative Name: localtime.format

See also: sys.time, sys.time.seconds, sys.time.minutes, sys.time.hour,
sys.time.weekday, sys.time.monthday, sys.time.month,
sys.time.year, sys.time.yearday, sys.gmtime.format

5.1.134 sys.time.highres()

Returns the current system time as the number of seconds and microseconds since
midnight, 1/1/1970. The value is returned as a double, e.g. 1138417190.823265

Sample Usage

Stime = sys.time.highres/() ;
Alternative Name: time.highres
See also: sys.timeToString, sys.localtime.format, sys.gmtime.format,
sys.time

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 116 OF 275

() ZeUs

5.1.135 sys.time.hour(unixtime)

Returns the hour of the day in local time (0-23).

If optional parameter 'unixtime' is supplied, then this specifies the time since midnight
1/1/1970 otherwise the current time will be used.

Sample Usage

Shour = sys.time.hour();
Alternative Name: time.hour
See also: sys.time, sys.time.seconds, sys.time.minutes, sys.time.weekday,

sys.time.monthday, sys.time.yearday, sys.time.month,
sys.time.year, sys.localtime.format

5.1.136 sys.time.minutes(unixtime)

Returns the minutes after the hour in local time (0-59).

If optional parameter 'unixtime' is supplied, then this specifies the time since midnight
1/1/1970 otherwise the current time will be used.

Sample Usage

Smins = sys.time.minutes () ;
Alternative Name: time.minutes
See also: sys.time, sys.time.seconds, sys.time.hour, sys.time.weekday,

sys.time.monthday, sys.time.yearday, sys.time.month,
sys.time.year, sys.localtime.format

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 117 OF 275

() ZeUs

5.1.137

5.1.138

sys.time.month()

Returns the month of the year in local time (1-12).

If optional parameter 'unixtime' is supplied, then this specifies the time since midnight

1/1/1970 otherwise the

Sample Usage

current time will be used.

Find out what the month is tomorrow.

Smonth = sys.time.month(sys.time () + 86400) ;

Alternative Name:

See also:

time.month

sys.time, sys.time.seconds, sys.time.minutes, sys.time.hour,
sys.time.weekday, sys.time.monthday, sys.time.yearday,
sys.time.year, sys.localtime.format

sys.time.monthday(unixtime)

Returns the day of the month in local time (1-31).

If optional parameter 'unixtime' is supplied, then this specifies the time since midnight
1/1/1970 otherwise the current time will be used.

Sample Usage

Sdayofmonth =

sys.time.monthday () ;

Alternative Name:

See also:

time.monthday

sys.time, sys.time.seconds, sys.time.minutes, sys.time.hour,
sys.time.weekday, sys.time.yearday, sys.time.month,
sys.time.year, sys.localtime.format

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 118 OF 275

() ZeUs

5.1.139 sys.time.seconds(unixtime)

Returns the seconds after the minute in local time. Normally, it returns a number in the
range of (0-59), but can be up to 61 to allow for leap seconds.

If optional parameter 'unixtime' is supplied, then this specifies the time since midnight
1/1/1970 otherwise the current time will be used.

Sample Usage

Ssecs = sys.time.seconds () ;
Alternative Name: time.seconds
See also: sys.time, sys.time.minutes, sys.time.hour, sys.time.weekday,

sys.time.monthday, sys.time.yearday, sys.time.month,
sys.time.year, sys.localtime.format

5.1.140 sys.time.weekday(unixtime)

Returns the day of the week in local time (1-7). Sunday has the value 1; Saturday has the
value 7.

If optional parameter 'unixtime' is supplied, then this specifies the time since midnight
1/1/1970 otherwise the current time will be used.

Sample Usage

Sdayofweek = sys.time.weekday () ;

Alternative Name: time.weekday

See also: sys.time, sys.time.seconds, sys.time.minutes, sys.time.hour,
sys.time.monthday, sys.time.yearday, sys.time.month,
sys.time.year, sys.localtime.format

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 119 OF 275

() ZeUs

5.1.141 sys.time.year(unixtime)

Returns the year in local time (1970-2038).

If optional parameter 'unixtime' is supplied, then this specifies the time since midnight
1/1/1970 otherwise the current time will be used.

Sample Usage

Syear = sys.time.year();
Alternative Name: time.year
See also: sys.time, sys.time.seconds, sys.time.minutes, sys.time.hour,

sys.time.weekday, sys.time.monthday, sys.time.yearday,
sys.time.month, sys.localtime.format

5.1.142 sys.time.yearday(unixtime)

5.2

Returns the day of the year in local time (1-366).

If optional parameter 'unixtime' is supplied, then this specifies the time since midnight
1/1/1970 otherwise the current time will be used.

Sample Usage

Sdayofyear = sys.time.yearday () :;

Alternative Name: time.yearday

See also: sys.time, sys.time.seconds, sys.time.minutes, sys.time.hour,
sys.time.weekday, sys.time.monthday, sys.time.month,
sys.time.year, sys.localtime.format

Zeus Traffic Manager Functions

Zeus TrafficScript functions provide the means to inspect, manipulate and direct traffic
within Zeus Traffic Manager.

The TrafficScript functions are grouped into several families:

e connection.: These low-level functions allow you to query and manipulate the
connection directly;

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 120 OF 275

|
\

f
i

i

u“

!
9

connection.data.: These functions allow you to set and query connection-local
data;

counter.: Provides a simple counter increment mechanism;
data.: These functions allow you to store and retrieve persistent variables;
event.: Provides the ability to trigger a custom event;

geo.: These functions provide various geo-location abilities to the Zeus Multi-Site
Manager product;

http.: These helper functions allow you to query and manipulate HTTP connections
easily, without having to parse and interpret the connection directly;

http.cache.: These functions give you control over the Web Cache used for
caching HTTP content;

http.compress.: These functions allow you to control whether or not compressible
responses are compressed;

http.request.: These functions can be used to issue HTTP GET or POST requests,
and return the result;

http.stream.: These functions can be used to manipulate streaming data over
HTTP;

java.: Runs a named Java Extension;
log.: These functions can be used to append messages to the error log file;

net.dns.: These functions can be used to perform DNS lookups in a TrafficScript
rule;

pool.: These functions are used to select the pool to balance the connection with;
rate.: Use these functions to select a rate shaping class;

request.: These low-level functions allow you to query and manipulate the client-
side of the connection directly;

resource.: These functions query external resources;

response.: These low-level functions allow you to query and manipulate the
serverside of the connection directly;

rtsp.: These functions provide control over Real Time Streaming Protocol (RTSP)
traffic;

rule.: These functions can examine the current rule processing situation;
sip.: These functions provide control over Session Initiation Protocol (SIP) traffic;

slm.: These functions are used to query and assign service level monitoring
properties to a connection.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 121 OF 275

() ZeUs

5.2.1

e ssl.: These functions are used to query the SSL parameters of encrypted
connections;

e xml.: These functions are used to query and manipulate XML data.

connection.checkLimits([poolname])

This function checks to see if the connection will be queued due to backend connection
limits. The function returns 1 if the connection is within configured maximum limits for the
named pool (See max_connections_pernode setting in Pool > Connection Management).
The function returns 0 if the connection will exceed the configured maximum limits and will
be queued.

If the named pool does not exist, your traffic manager will log a warning message and a
value of -1 will be returned.

Sample Usage

A connection is queued if it exceeds
max connections pernode.
Send a failure response to the client.
if (!connection.checkLimits("pool")) {
http.sendResponse("500 Failure",
"text/plain",
"Reached maximum connections",

nw),.

connection.discard() ;

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 122 OF 275

() ZeUs

5.2.2 connection.close(Data, [Read])

5.23

5.24

Writes the provided data directly back to the client. After the data has been sent, the
connection is closed.

The optional second argument specifies whether data should continue to be read in from
the client after sending this response, and wait for it to close the connection. If set to O,
the connection will close immediately. If non-zero, the traffic manager will wait and read
any remaining data from the connection before closing it.

The default behaviour is to wait, because some client software will not read a response
until it has sent its entire request.

Sample Usage

Send an instant response and close the connection

connection.close("500 Go away\r\n");
See also: connection.discard, http.sendResponse
connection.discard()

Immediately closes the current connection and stops processing rules. This is equivalent to
the function call 'pool.use("discard")'.

Sample Usage

Drop this connection NOW!

connection.discard() ;

See also: connection.close, http.sendResponse

connection.getBandwidthClass() - deprecated

This function has been deprecated. Use response.getBandwidthClass instead.

Returns the current bandwidth class for the connection to the client, or an empty string if
no class is set.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 123 OF 275

() ZeUs

5.2.5

5.2.6

5.2.7

5.2.8

connection.getData(count) - deprecated
This function has been deprecated. Use request.get instead.
Returns the first 'count' bytes of data provided by the client.

Warning: you can stall a connection by asking it to read more data than the remote client
will provide. Combine this with connection.getDatalLen() to reliably read data from a
connection.

connection.getDatalen() - deprecated

This function has been deprecated. Use request.getlLength instead.

Returns the number of bytes of data already received from the client. This can be
combined with connection.getData() to reliably read data from a connection without
stalling if no data is available.

connection.getLine(offset) - deprecated
This function has been deprecated. Use request.getlLine instead.

Returns a line of input data provided by the client. The line separator is '\n', and this is
stripped off before returning the line. connection.getline() takes a single byte-count
argument which indicates where to start scanning for a line; a value of '0' begins at the
start, so returns the first line.

When connection.getline() returns, the variable $1 is updated to point to the start of the
next line in the datastream.

You can iterate through the lines of input data by using $1 as the iterator variable.

connection.getLocallP() - deprecated

This function has been deprecated. Use request.getlLocallP instead.

Returns the IP address that the client connected to, i.e. the address local to this machine.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 124 OF 275

() ZeUs

5.2.9

connection.getLocalPort() - deprecated

This function has been deprecated. Use request.getLocalPort instead.

Returns the network port number that the client connected to. (e.g. port 80 is normal for a
web server)

5.2.10 connection.getMemoryUsage()

5.2.11

Returns an estimate of the amount of memory currently in use for this connection, in
bytes. Memory is primarily used for buffering data, and the memory usage can be tuned
using the various buffer size settings.

Sample Usage

How much memory are we using?

Smemoryusage = connection.getMemoryUsage () ;

connection.getNode()

Returns the name of the back-end node that this request is connected to. If a back-end
node has not been chosen, which is normally the case in request rules, it returns the
empty string.

Sample Usage

Which node is used for this connection

Snodename = connection.getNode () ;

See also: connection.getPool, connection.getVirtualServer,
request.avoidNode

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 125 OF 275

() ZeUs

5.2.12 connection.getPersistence()

In a Response rule this function returns the name of the current Session Persistence class
used for this connection, or whatever class has been set by a previous use of

connection.setPersistence().

Sample Usage

Sclass = connection.getPersistence () ;

See also: connection.setPersistence

5.2.13 connection.getPool()

Returns the name of the pool that this request is connected to. If a pool has not been
chosen, it returns the empty string.

Sample Usage

Where are we connected to?

Spoolname = connection.getPool () ;

See also: connection.getNode, connection.getVirtualServer

5.2.14 connection.getRemotelP() - deprecated

This function has been deprecated. Use request.getRemotelP instead.

Returns the remote IP address of the client.

5.2.15 connection.getRemotePort() - deprecated

This function has been deprecated. Use request.getRemotePort instead.

Returns the remote port of the client's connection.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 126 OF 275

() ZeUs

5.2.16 connection.getServicelLevelClass()

Returns the current service level class for the connection, or an empty string if no class is
set.

Sample Usage

Sclass = connection.getServicelLevelClass();

See also: connection.setServicelevelClass

5.2.17 connection.getVirtualServer()

Returns the name of the Virtual Server that the rule is running under.

Sample Usage

Are we on the secure site?
if (connection.getVirtualServer () == "secure") {
pool.use("secure");
}
See also: connection.getNode, connection.getPool

5.2.18 connection.setBandwidthClass() - deprecated

This function has been deprecated. Use response.setBandwidthClass instead.

Sets the bandwidth class for the current connection to the client. Providing an empty class
name removes the bandwidth class from the connection. It returns zero if an error occurs
(for example, if the bandwidth class does not exist), and 1 otherwise.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 127 OF 275

() ZeUs

\
\

1

u“

/
9

5.2.19 connection.setData(request data) - deprecated

This function has been deprecated. Use request.set instead.
Replaces the input data read from the client with the provided string.

This is a low-level routine that should be used with care. For protocols with their own
higher-level protocol managers (e.g. HTTP), use the higher level routines to alter the input
data (e.g. http.setHeader() and http.setBody()).

5.2.20 connection.setldempotent(resend) - deprecated

This function has been deprecated. Use request.setldempotent instead.

Marks a request as resendable or non-resendable.

An idempotent request has no detrimental side effects, so it can safely be attempted
multiple times. A non-idempotent request has a side effect - for example, it may update a
database, or initiate a purchase.

By default, all non-HTTP requests are marked as idempotent. If a back-end node fails to
generate a correct response when a request is initially forwarded to it, your traffic
manager will attempt to resend the request to another node.

connection.setldempotent() can override this behaviour. If 'resend' is zero, this indicates
that the request should only be attempted against one back-end node.

If 'resend' has a non-zero value, this indicates that if a request is made to a back-end
node and a correct response is not received, your traffic manager should retry the request
against another back-end node.

Note that a request cannot be resent once it has begun streaming data between the client
and the node. Additionally, UDP connections cannot be marked as resendable (the UDP
client application should handle failed UDP responses).

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 128 OF 275

() ZeUs

5.2.21 connection.setPersistence(name)

Sets the Session Persistence class that will be used for the connection. This is used to
override the default Session Persistence class that will be used once a Pool is selected.

If no parameter is given then the current Session Persistence class will be removed and
the Pool's default session persistence class will be used for this connection.

Sample Usage

connection.setPersistence("sales");

See also: connection.getPersistence, connection.setPersistenceKey

5.2.22 connection.setPersistenceKey(value)

Sets the value of the Session Persistence key that is used by a Universal Session
Persistence type class.

Setting the value to the empty string will remove any persistence key from the connection.

A Session Persistence class that uses Universal Session Persistence attempts to ensure
that every connection that provides the same key is directed to the same back-end node.

This function has no effect if a different type of session persistence class is ultimately
used.

Sample Usage

Svalue = http.getHeader ("User-Agent")
request.getRemotelIP () ;
connection.setPersistenceKey($value);

connection.setPersistence("my persistence class");

See also: connection.setPersistence

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 129 OF 275

() ZeUs

5.2.23 connection.setPersistenceNode(value)

Sets the back-end node to be used by a NamedNode Persistence class.

A Session Persistence class that uses NamedNode Persistence will then ensure that this
node will be used for the request. The node must be valid and exist in the Pool being used.
If no port number is given, or if the port number is not valid, then if there is a node with a
matching name, it will be used. For example, if the node 'web:80' is specified, but there is
only a 'web:443', then that node will be used instead. This is to help share session
persistence between different services on the same machine.

This function has no effect if a different type of session persistence class is ultimately
used.

Sample Usage

Use the node 'web:80' for this request

connection.setPersistenceNode ("web:80");

See also: connection.setPersistence

5.2.24 connection.setServicelLevelClass()

Sets the service level class for the current connection. It returns zero if an error occurs
(for example, if the service level class does not exist), and 1 otherwise

Sample Usage

connection.setServicelLevelClass("gold");

See also: connection.getServicelLevelClass

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 130 OF 275

() ZeUs

5.2.25 connection.sleep(milliseconds)

Pauses processing of the current connection for the specified number of milliseconds. This
can be used to rate-limit particular clients; for example, those asking for particular files, or

from particular locations, or using particular user-agents.

Sample Usage

Pause this connection for 2 seconds

connection.sleep(2000);

5.2.26 connection.data.get(key)

Returns the value that was previously stored with the given

key using

connection.data.set() in the current connection, or returns the empty string if no data was

stored.

Sample Usage

Track the state of this connection so that we

can process the response correctly

Sreq = request.get(5);

if(string.startsWith($req, "LOGIN")) {
connection.data.set("state", "login");

} else {
connection.data.set("state", "");

}

#

in the response,

Sstate = connection.data.get("state");

See also: connection.data.set, data.get

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 131 OF 275

() ZeUs

5.2.27 connection.data.set(key, value)

Stores a value for this connection, associating it with the provided key. The value can be
retrieved later when processing the same connection, using connection.data.get(). Once

the connection finishes, the value cannot be retrieved.

Sample Usage

Track the state of this connection so that we

can process the response correctly

Sreq = request.get(5);

if(string.startsWith($req, "LOGIN")) {
connection.data.set("state", "login");

} else {
connection.data.set("state", "");

}

#

in the response,

Sstate = connection.data.get("state");

See also: connection.data.get, data.set

5.2.28 counter.increment(counter, [amount])

Increments the numbered counter. These counters are readable via SNMP, and can be

graphed on the Current Activity page on the Administration Server.

By default, the counter is incremented by one, but you can also supply an amount to
increment the counter by. If a negative amount is supplied the counter is decremented.

Sample Usage

Increment the first user counter

counter.increment (1);

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 132 OF 275

() ZeUs

5.2.29 data.get(key)

Returns the value that was previously stored with the given key using data.set(), or
returns the empty string if no data was stored.

Values stored in this way are persistent; a value stored in one rule can later be retrieved
by a different rule handling a different connection. Thus, a rule can maintain persistent
state across connections.

Sample Usage

data.set ("count", 7);
In another rule or connection...

Svalue = data.get("count"); # Returns 7

See also: data.set, data.remove, data.getMemoryUsage

5.2.30 data.getMemoryFree()

Returns the amount of free space, in bytes, available for storing information with
data.set().

If memory space is low, then data.reset() can be used to clear some or all of the entries
from the storage. Alternatively, the upper limit on memory can be configured using
trafficscript!data_size on the Global Settings page.

Sample Usage

If running low on storage, clear some temporary
data that other rules have stored.

Sbytes = data.getMemoryFree () ;

if (Sbytes < 1024) {

data.reset ("temp-");

See also: data.set, data.reset, data.getMemoryUsage

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 133 OF 275

() ZeUs

5.2.31 data.getMemoryUsage()

Returns an estimate of the amount of memory, in bytes, used by entries that have been
stored by data.set().

This can be used to verify if a rule is storing excessive amounts of data, starving the host
machine of memory.

Sample Usage

Sbytes = data.getMemoryUsage () ;

See also: data.set, data.reset, data.getMemoryFree

5.2.32 data.remove(key)

Removes the value that was previously associated with the given key using data.set().

data.remove() returns 1 if the item did exist, or 0 if it was not found.

Sample Usage

data.set ("cache-$url", Sobj);
In another rule or connection...

data.remove ("cache-Surl");

See also: data.set, data.get, data.reset

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 134 OF 275

5.2.33 data.reset([prefix])

Removes some or all of the mappings created by data.set(). With no arguments, it
removes all keys. With a single argument, it removes all keys that begin with the supplied
string.

Sample Usage

Free some memory if we've used too much
if (data.getMemoryUsage () > 102400) {

data.reset ("mappings-");

See also: data.set, data.remove, data.getMemoryUsage,
data.getMemoryFree

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 135 OF 275

() ZeUs

5.2.34 data.set(key, value)

Stores a value, associating it with the provided key. The value can be retrieved later using

data.get(), even from a different rule or connection.

The value will be stored as a string, implicit conversion of floating point numbers to strings
can cause some precision loss. You can convert a floating point number into a string with
no precision loss using 'string.sprintf("%f", $val)'. Arrays and hashes are serialised before

storing and will be deserialised into their original form when retrieved with data.get().

To prevent memory problems, there is an upper limit on the amount of data that can be
stored in the TrafficScript data storage. This means that the data.set() may fail. The upper
limit can be configured using trafficscript!data_size on the Global Settings page.

data.set() returns true if the entry was stored, or false if there was no room.

Sample Usage

Associate $value with S$key for future retrieval
data.set (Skey, S$Svalue);
Run this code only once:
if(!'data.get("runonce")) {
Do initialization
...

data.set ("runonce", 1);

See also: data.get, data.remove, data.getMemoryUsage

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 136 OF 275

() ZeUs

5.2.35 event.emit(custom event name, message)

Triggers a Custom Event identified by the 'custom event name'. Actions can be associated
with the Custom Event by configuring an Event Type to contain a Custom Event with the
specified 'custom event name’, and then associating that Event Type with an Action.

The 'custom event name' cannot contain '/' or control codes.

In addition to custom actions, a log message will be produced containing the eventid and
the message.

Sample Usage

Emit a debug statement.

event.emit ("debugl", "Some debug information");

See also: log.info, log.warn, log.error

5.2.36 geo.getCity(ip)
Returns the city of the supplied IPv4 address, or the empty string.

Sample Usage

Get this IP's city, such as Santa Clara
Scity = geo.getCity("216.250.81.96");

5.2.37 geo.getCountry(ip)
Returns the country name of the supplied IPv4 address, or the empty string.

Sample Usage

Get this IP's country, such as United States
Scountry = geo.getCountry("216.250.81.96");

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 137 OF 275

() ZeUs

5.2.38 geo.getCountryCode(ip)

Returns the two-character country code of the supplied IPv4 address, or the empty string.

Sample Usage

Get this IP's country code, such as US
ScountryCode = geo.getCountryCode("216.250.81.96");

5.2.39 geo.getDistanceKM(latl, lonl,lat2,lon2)

Returns the distance in kilometres between two points on the earth's surface (identified by
latitude and longitude), or -1 on error.

Sample Usage

Get the distance between two lat-long points in km

$d = geo.getDistancekKM("52.2338", "0.1529",
"37.4062", "-121.9765");

5.2.40 geo.getDistanceMiles(latl, lonl,lat2,lon2)

Returns the distance in miles between two points on the earth's surface (identified by
latitude and longitude), or -1 on error.

Sample Usage

Get the miles between two lat-long points

$Sd = geo.getDistanceMiles("52.2338", "0.1529",
"37.4062", "-121.9765");

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 138 OF 275

() ZeUs

5.2.41 geo.getlPDistanceKM(ipl,ip2)

Returns the distance in kilometres between the locations of two IPv4 addresses. It will

return -1 unless both locations can be found.

Sample Usage

Get the distance between two IPs in kilometres
$d = geo.getIPDistanceKM("11.12.13.14",
"25.26.27.28") ;

5.2.42 geo.getlPDistanceMiles(ipl,ip2)

Returns the distance in miles between the locations of two IPv4 addresses. It will return -1

unless both locations can be found.

Sample Usage

Get the distance between two IPs in miles

$Sd = geo.getIPDistanceMiles("1.2.3.4", "5.6.7.8");

5.2.43 geo.getLatitude(ip)

Returns the decimal latitude of the supplied IPv4 address, or the empty string if the
location is unknown. This may be accurate to city, region or only country level: to find out,

check whether geo.getCity() and geo.getRegion() return empty strings.

Sample Usage

Get this IP's decimal latitude (positive = north),
such as 37.3961
$lat = geo.getlLatitude("216.250.81.96");

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 139 OF 275

5.2.44 geo.getLocation()

Returns a the name of the location in which this traffic manager is based.

Note that traffic managers can be assigned to locations only when using the Zeus Multi-
Site Manager.

Sample Usage

Run this part of the rule if the request was
sent to a traffic manager located in Cambridge
if(geo.getlLocation () == "Cambridge") {

#

See also: geo.getlLocationLonlLat

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 140 OF 275

() ZeUs

5.2.45 geo.getLocationLonLat()

Returns a hash containing the longitude and latitude of the location to which this request

was

sent.

Note that traffic managers can be assigned to locations only when using the Zeus Multi-
Site Manager and locations can be assigned a latitude and longitude only when using the

Global Load Balancing feature.

Sample Usage

How for away from the traffic manager did this
request originate from?
Sloc = geo.getLocationLonLat () ;
Sip = request.getRemoteIP () ;
Sreglon = geo.getLongitude($ip);
Sreglat = geo.getlLatitude($ip)
Sreqgqloc = geo.getCountry($ip);
log.info("Request was sent from "
Sreqloc . ", "
geo.getDistanceMiles($loc["latitude"],
Sloc["longitude"],
Sreglat, S$reglon)

" miles away from here");

See also: geo.getlLocation

5.2.46 geo.getLongitude(ip)

Returns the decimal longitude of the supplied IPv4 address, or the empty string if the
location is unknown. This may be accurate to city, region or only country level: to find out,

check whether geo.getCity() and geo.getRegion() return empty strings.

Sample Usage

Get this IP's decimal longitude (positive = east),
such as -121.962
Slong = geo.getLongitude("216.250.81.96");

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 141 OF 275

() ZeUs

= e — e —— e — e
S— — e ———
— L — ——— .

5.2.47 geo.getRegion(ip)

Returns the region (e.g. US state) of the supplied IPv4 address, or the empty string if the
location is unknown or doesn't have a region.

Sample Usage

Get this IP's region,

Sstate = geo.getRegion (

such as California

"216.250.81.96");

5.2.48 geo.getRegionCode(ip)

Returns the two-character region code (e.g. US state abbreviation) of the supplied IPv4

address, or the empty string. The
versions.

Sample Usage

code for a given region may differ between software

SstateCode

Get this IP's region code,
geo.getRegionCode ("64.69.78.223");

such as CA

5.2.49 http.addHeader(name, value

Modifies the current HTTP request,

)

adding an HTTP header with the supplied value. If the

header already exists, then a duplicate header will be added to the message with the new

value. The header name is automat

Sample Usage

ically translated to the correct case before it is added.

if(!'http.headerExists (

Add a host header if it is missing

http.addHeader ("Host",

"Host")) {

"unknown"

)

See also:

http.setHeader, http.getHeader, http.removeHeader,

http.headerExists, http.addResponseHeader

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 142 OF 275

() ZeUs

Ii
\

i

u“

/
9

5.2.50 http.addResponseHeader(name, value)

5.2.51

Adds an HTTP header to the HTTP response that will be sent back to the client. If the
header already exists in the response, then this value will be appended to the existing
value. The header name is automatically translated to the correct case before it is added.

Sample Usage

Set a cookie to remember this user
http.addResponseHeader ("Set-Cookie",
"1d=12345678; path=/");

See also: http.setResponseHeader, http.getResponseHeader,
http.removeResponseHeader, http.addHeader

http.changeSite()

Redirect users to a new website. It is a more sophisticated version of http.redirect() that
will preserve the original path that the request asked for. Note that it sends back a HTTP
301 redirect rather than the 302 response returned by http.redirect(). For instance, if the
original request was for "http://www.example.com/image/image.jpg", then
http.changeSite("example.co.uk") would redirect the user to
"http://example.co.uk/image/image.jpg" The redirection will preserve the original path
(and any query string) of the request, together with the port number and protocol. If you
wish to force any of these details, then you can specify them as part of the supplied host
name. e.g. http.changeSite("https://www.example.com") will always send people to a
SSL-encrypted site. You can also add on a prefix to the path of the URL, e.g.
http.changeSite("www.example.com/oldsite") would redirect a request for
"http://www.example.com/missing/page.html" to
"http://www.example.com/oldsite/missing/page.html". If the original request matches the
supplied redirection, then http.changeSite() will take no action and let the request
continue. This ensures that no 'redirection loops' occur.

Sample Usage

Send users to our US site
if (http.getHostHeader () == "www.zeus.co.uk") {

http.changeSite("www.zeus.com") ;

See also: http.sendResponse, http.redirect

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 143 OF 275

() ZeUs

5.2.52 http.cookie(name) - deprecated
This function has been deprecated. Use http.getCookie instead.

Returns the value of the named cookie.

5.2.53 http.doesFormParamExist(Parameter)

Checks whether a form parameter is present, either in the URL query string, or if not found
and the request is a POST, from the POST body data. It returns 1 if the parameter is
present, and 0 if not.

This is useful when there are form parameters with no value, e.g a query string like
'foo=bar&stuff&x=y' - the 'stuff' parameter has no value, but is present.

Sample Usage

Did the user ask for fries with that?
if (http.doesFormParamExist ("fries")) {

Do something

See also: http.getFormParam, http.listFormParamNames,
http.getFormParams

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 144 OF 275

() ZeUs

5.2.54 http.getBody([count])

Returns the body data of the request. HTTP clients use the body data for sending file
uploads or for HTML form parameters.

If the optional 'count' parameter is supplied, http.getBody() will only read and return this
number of bytes. If count is 0, http.getBody() returns the entire request.

If the request has no body, then this returns an empty string. This function is not usable in
response rules, as the body data of the request will no longer be accessible.

To read HTML form parameters, it is easier to use http.getFormParam() as that will work
for GET and POST requests.

Sample Usage

Read the entire request body
Sbody = http.getBody () ;

See also: http.getBodyLines, http.setBody, http.getResponseBody,
http.getFormParams, http.listFormParamNames

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 145 OF 275

() ZeUs

5.2.55 http.getBodyLines([count])

Splits the body data of the HTTP request into individual lines and returns an array of the
data.

If the optional 'count' parameter is supplied, http.getBodyLines() will only read and return
this number of bytes. If count is 0, http.getBodyLines() returns the entire request.

If the request has no body, then this returns an empty array. This function is not usable in
response rules, as the body data of the request will no longer be accessible.

To read HTML form parameters, it is easier to use http.getFormParams() as that will work
for GET and POST requests.

Sample Usage

Read the entire request body
Sbody = http.getBodyLines () ;
If the body data is some special format we can
understand then we can process it line-by-line
if (array.length(S$body) > 0) {

if(array.shift(S$body) == "Special data") {

foreach($line in $body) {
handle special body data lines

See also: http.getBody, http.getResponseBodylines

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 146 OF 275

() ZeUs

5.2.56 http.getCookie(name)
Returns the named cookie in the incoming HTTP request.

http.getCookie is a helper method that makes it easier to parse the HTTP Cookie header
and extract the values of that particular cookie, rather than using http.getHeader()
directly.

An HTTP 'Cookie' header can have multiple values, such as
Cookie: user-id=Joe; user-type=gold

http.getCookie(...) will retrieve the 'Cookie' header line and parse it, returning the value
of the cookie. If the cookie does not exist, http.getCookie() will return the empty string.

Sample Usage

Get the PHP session cookie

Scookie = http.getCookie("PHPSESSIONID") ;

See also: http.getCookies, http.setCookie, http.removeCookie,
http.getResponseCookie

5.2.57 http.getCookies()

Returns a hash containing the names of all the cookies in this request mapped to their
values.

An HTTP 'Cookie' header can have multiple values, such as
Cookie: user-id=Joe; user-type=gold

http.getCookies() will retrieve the 'Cookie' header line and parse it, returning a hash
mapping all the cookie names to their values.

Sample Usage

List all of the cookie names and their values

Scookies = http.getCookies () ;

foreach($cookie in hash.keys($cookies)) {
log.info($cookie . ": "™ . Scookies[S$Scookie]);
}
See also: http.getCookie, http.setCookie, http.removeCookie,

http.getResponseCookies

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 147 OF 275

() ZeUs

5.2.58 http.getFormParam(Parameter, [Separator])

Returns the %-decoded form parameter from the URL query string, or if not found and the
request is a POST, from the POST body data.

If the parameter is provided twice, only the first will be returned, unless the optional
separator is provided, in which case all matches will be returned, separated with this
string.

Sample Usage

See what drink the user wanted

Sdrink = http.getFormParam("drink");

See also: http.setQueryString, http.getRawURL, http.getBody,
http.listFormParamNames, http.getFormParams

5.2.59 http.getFormParamNames(Separator) - deprecated

This function has been deprecated. Use http.listFormParamNames instead.

Returns a list containing the names of all the form parameters present in the URL query
string and, if the request is a POST, in the POST body data. The names are returned as a
single string, separated by the string supplied to this function. If the same parameter
appears multiple times in the request, it will only appear once in the list returned by this
function.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 148 OF 275

() ZeUs

5.2.60 http.getFormParams()

Returns a hash mapping the names of all the form parameters present in the URL query
string and, if the request is a POST, in the POST body data to their values. If the same
parameter appears multiple times in the request then it will be mapped to an array of

values in the hash that is returned by this function.

Sample Usage

Log all of the form parameters and values

Sparams = http.getFormParams () ;

foreach($param in hash.keys($params)) {
Svalues = $params[S$param];
if(lang.isArray($values)) {

log.info ($Sparam . "="

array.join($values, ", ")
) i
} else {
log.info ($param . "=" . Svalues);
}
}
See also: http.getFormParam, http.doesFormParamExist,

http.listFormParamNames

5.2.61 http.getHeader(name)

Returns the value of a named HTTP header in the HTTP request, or the empty string if the
header does not exist or has an empty value. The header name is automatically translated

into the proper case for the lookup.

Sample Usage

Get the browser name and version
Sbrowser = http.getHeader ("User-Agent");
this returns the same value

Sbrowser = http.getHeader ("user-agent");

See also: http.getHeaders, http.setHeader, http.addHeader,

http.removeHeader, http.headerExists, http.getResponseHeader,

http.getHostHeader, http.getHeaders

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 149 OF 275

() ZeUs

5.2.62 http.getHeaderNames() - deprecated

This function has been deprecated. Use http.listHeaderNames instead.

Returns a list of all the headers that are present in the request.

The headers are returned as a single string, separated by spaces.

5.2.63 http.getHeaders()

Returns a hash containing all the header names in the request mapped to their values.

Sample Usage

Show all the headers in the request
Sheaders = http.getHeaders () ;

foreach($Sheader in hash.keys($headers)) {
log.info(Sheader . "=" . Sheaders[$header]);
}
See also: http.getHeader, http.setHeader, http.addHeader,

http.removeHeader, http.headerExists, http.getResponseHeaders,
http.getHostHeader

5.2.64 http.getHostHeader()

Returns the HTTP Host header. This value is lowercased and has the port removed. Any
trailing full stop is also removed. For example if the Host header is 'www.Zeus.com:80'
then http.getHostHeader() returns 'www.zeus.com'.

Sample Usage

Get the unambiguous Host header

Shostheader = http.getHostHeader () ;

See also: http.getHeader

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 150 OF 275

() ZeUs

5.2.65 http.getMethod()

Returns the HTTP method that was used to make the request, such as GET or POST.

Sample Usage

Was this an HTTP POST?
if (http.getMethod ()

== "POST") {
handle POST request ...

See also:

http.setMethod

5.2.66 http.getMultipartAttachment(part)

Returns the specified data out of a multipart encoded HTTP request. The data contained in

the part is returned on success, or

if it doesn't exist for that part. $1 contains the

Content Type of the part, and $2 contains the complete headers for that part.

Sample Usage

Scount = 0;

while ($data =

http.getMultipartAttachment ($count)) {
log.info("Data was " Sdata) ;
log.info("Content-Type was " i)¢
log.info("Headers were " . $2);
$count = $count + 1;

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 151 OF 275

() ZeUs

5.2.67 http.getPath()

Returns the %-decoded path in the HTTP request URL, stripping the query string if one
was provided. If there is a leading scheme and authority prefix, this is removed as well, so
the URL "http://www.example.com/content?page=44" will be returned as "/content".

Sample Usage

Retrieve the path
Spath = http.getPath();

See also: http.setPath, http.getRawURL, http.getQueryString,
http.getRawQueryString, http.normalizePath

5.2.68 http.getQueryString()

Returns the %-decoded query string in the URL, or the empty string if no query string was
provided.

Sample Usage

Was there a query string?
$gs = http.getQueryString() ;
if($gs) |

Handle query string ...

See also: http.setQueryString, http.getRawQueryString,
http.setRawQueryString, http.getRawURL

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 152 OF 275

5.2.69 http.getRawQueryString()

Returns the raw (non %-decoded) query string in the URL, or the empty string if no query
string was provided.

Sample Usage

Was there a query string?
Sgs = http.getRawQueryString () ;
if($gs) A

Handle query string ...

See also: http.setRawQueryString, http.getQueryString, http.setQueryString,
http.getRawURL

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 153 OF 275

() ZeUs

5.2.70 http.getRawURL()

Returns the raw (non-decoded) URL data provided by the client in the first line of the HTTP
request, after the method and before the HTTP version specifier.

The raw URL data includes both the path and query string if supplied and is not decoded. It
may also contain the protocol and hostname if the client sent them. It could contain %-
escaped characters that can be used to disguise the contents of the URL. Use
http.getPath() or http.getQueryString() to return the %-decoded version of the path or
query string.

This function could return raw urls of various forms including:

e http://www.example.com/file.html

/file.html

/path/../file.html

/file.html?querystring

/file.htmlI?gs%encoded

You can use http.normalizePath() on the path component to remove any '/../' or '/./'
references.

In general it is better to use http.getPath() and http.getQueryString() to avoid the need to
process the raw url.

Sample Usage

Srawurl = http.getRawURL () ;
if(string.contains(S$rawurl, "%00"™)) {
Something suspicious here ...

connection.discard() ;

See also: http.getPath, http.getQueryString, http.getRawQueryString,
string.unescape, http.normalizePath

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 154 OF 275

() ZeUs

5.2.71 http.getRequest()

Returns the full HTTP request and headers, but does not include any body data.

Sample Usage

Check that the request is not too big

for our servers

Srequest

http.getRequest () ;

if(string.len($request) > 2048) {
http.sendResponse (

"text/plain",

"413 Request too large",

"Request too large",

wn

) ;

See also:

http.listHeaderNames, http.getHeader, http.getBody

5.2.72 http.getResponse()

Returns the beginning of the HTTP response (the status line and the headers), up to but
not including the empty line that separates the headers from the body. The returned string

does not include any body data.

Sample Usage

See if the response included any

headers that start with 'Foo'

Sresponse http.getResponse() ;

if(string.regexMatch($response, ""“Foo"

log.info("A 'Foo' header was found"

))
)

{

See also:

http.listResponseHeaderNames,

http.getResponseHeader,

http.getResponseBody

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 155 OF 275

() ZeUs

5.2.73 http.getResponseBody([count])

Returns the body of the HTTP response.

If the response has chunked transfer encoding this function will return the de-chunked
body. Similarly if the response is gzip or deflate compressed the body will be returned
uncompressed.

If the optional 'count' parameter is provided, http.getResponseBody() will read and return
the first 'count' bytes of the response. If count is 0, http.getResponseBody() will return the
entire response.

Sample Usage

Read the entire response body

Sbody = http.getResponseBody () ;

See also: http.setResponseBody, http.getBody

5.2.74 http.getResponseBodyLines([count])

Splits the body data of the HTTP request into individual lines and returns an array of the
data.

If the response has chunked transfer encoding this function will return the de-chunked
body. Similarly if the response is gzip or deflate compressed the body will be returned
uncompressed.

If the optional 'count' parameter is provided, http.getResponseBodyLines() will read and
return the first 'count' bytes of the response. If count is 0, http.getResponseBodyLines()
will return the entire response.

Sample Usage

Read the entire response body

Sbody = http.getResponseBodyLines () ;

See also: http.setResponseBody, http.getBodyLines

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 156 OF 275

() ZeUs

5.2.75 http.getResponseCode()

Returns the status code from the first line of the HTTP response.

Sample Usage

Log 404 responses
if (http.getResponseCode () == 404) {
log.info("404 page for " . http.getPath());
}
See also: http.setResponseCode

5.2.76 http.getResponseCookie(name)
Returns the value of the named cookie in the HTTP response.

http.getResponseCookie() is a helper method to make it easier to parse the HTTP Set-
Cookie header and extract the values of that particular cookie, rather than using
http.getResponseHeader() directly.

If the cookie does not exist, http.getResponseCookie() will return the empty string.

This function should be called in a response rule; it has no effect in a request rule.

Sample Usage

Get the PHP session cookie

Scookie = http.getResponseCookie("PHPSESSIONID") ;

See also: http.getResponseCookies, http.setResponseCookie,
http.removeResponseCookie, http.getCookie

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 157 OF 275

() ZeUs

5.2.77 http.getResponseCookies()

Returns a hash containing the names of all the cookies being set in this response, mapped
to their values.

This function should be called in a response rule; it has no effect in a request rule.

Sample Usage

List all of the cookies that are being set in
the response and their wvalues

Scookies = http.getResponseCookies () ;

foreach($cookie in hash.keys(S$cookies)) {
log.info(S$cookie . ": " . S$Scookies[S$Scookie]);
}
See also: http.getResponseCookie, http.setResponseCookie,

http.removeResponseCookie, http.getCookies

5.2.78 http.getResponseHeader(name)

Returns the value of a named HTTP header in the HTTP response, or the empty string if
the header does not exist or has an empty value. The header name is automatically
translated into the proper case for the lookup.

Sample Usage

Get the mime type of the response

Smime = http.getResponseHeader ("Content-Type");
note that the MIME type may look like

'text/html; charset=IS0-8859-1"

See also: http.setResponseHeader, http.addResponseHeader,
http.removeResponseHeader, http.responseHeaderExists,

http.getHeader

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 158 OF 275

() ZeUs

5.2.79 http.getResponseHeaderNames() - deprecated

This function has been deprecated. Use http.listResponseHeaderNames instead.

Returns a list of all the headers that are present in the response.

The headers are returned as a single string, separated by spaces.

5.2.80 http.getResponseHeaders()
Returns a hash containing all the header names in the response mapped to their values.

Sample Usage

Show all the headers in the response

Sheaders = http.getResponseHeaders () ;

foreach($Sheader in hash.keys($headers)) {
log.info(S$header . "=" . Sheaders[$Sheader]);
}
See also: http.getResponseHeader, http.setResponseHeader,

http.addResponseHeader, http.removeResponseHeader,
http.responseHeaderExists, http.getHeaders

5.2.81 http.getResponseVersion()

Returns the version of the HTTP protocol being used. It returns the version string in the
first line of the HTTP response, such as 'HTTP/1.1'. It will return the empty string in the
case of HTTP/0.9 response.

Sample Usage

Get the HTTP response version

Sversion = http.getResponseVersion () ;

See also: http.getVersion

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 159 OF 275

() ZeUs

5.2.82 http.getVersion()

Returns the version of the HTTP protocol being used. It returns the version string in the
first line of the HTTP request, such as "HTTP/1.1". It will return the empty string in the
case of HTTP/0.9, which does not have a version specifier in the request.

Sample Usage

Get the HTTP version

Sversion = http.getVersion() ;

See also: http.getResponseVersion

5.2.83 http.headerExists(name)

Reports if a named header exists or not. It is similar to http.getHeader(), but makes it
possible to distinguish between a header not being present and a header having no value.

The header name is automatically translated into the proper case for the lookup.

It returns 1 if the header exists, and 0 if it does not.

Sample Usage

Add a host header if it is missing
if('http.headerExists("Host")) {
http.addheader ("Host", "unknown");

See also: http.getHeader

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 160 OF 275

() ZeUs

5.2.84 http.listFormParamNames()

Returns an array containing the names of all the form parameters present in the URL
query string and, if the request is a POST, in the POST body data. If the same parameter
appears multiple times in the request, it will only appear once in the list returned by this

function.

Sample Usage

Log all of the form parameters and values
Sparams = http.listFormParamNames () ;
foreach($param in S$params) {

wn_mn

log.info ($Sparam .

http.getFormParam(Sparam, ","));

See also: http.getFormParam, http.doesFormParamExist

5.2.85 http.listHeaderNames()

Returns a list of all the headers that are present in the request.

The headers are returned as an array.

Sample Usage

Log all of the header names and values

Sheaders = http.listHeaderNames () ;

foreach($header in S$headers) {
log.info ($header . "=" . http.getHeader ($header)) ;
}
See also: http.getHeader, http.removeHeader, http.getRequest,

http.listResponseHeaderNames

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 161 OF 275

() ZeUs

5.2.86 http.listResponseHeaderNames()

Returns a list of all the headers that are present in the response.
The headers are returned as an array.

Sample Usage

Log all of the header names and values
Sheaders = http.listResponseHeaderNames () ;
foreach($header in S$headers) {

log.info (Sheader . "=" . http.getHeader ($Sheader)) ;

See also: http.getResponseHeader, http.removeResponseHeader,
http.getResponse, http.listHeaderNames

5.2.87 http.normalizePath(url)

Flattens a decoded URL path, converting '//' to '/', '/./' to '/', and flattening '/a/../' to '/'. It

returns the flattened path string.

If the file system path is invalid, this function returns the empty string. Invalid paths
include those that contain disallowed characters like '\0', invalid hex-escapes, or that use

'../' sequences to reference a location outside the local root.

This function should be used on the retrieved URL before attempting path matching for
access control. Remember to pass in a %-decoded URL path, to prevent disguised paths

and control codes from being 'hidden' in the path.

Sample Usage

Check for access to /secure
Spath = http.normalizePath(http.getPath());
if(!$path) {
bad path ...
} else 1if(string.startsWith($path, "/secure")) {

request to restricted area: check credentials

See also: http.getPath

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 162 OF 275

() ZeUs

5.2.88 http.redirect()

Sends back a HTTP 302 redirect response, which will send a web browser to a different

URL. This is equivalent to http.sendResponse("302 Moved Temporarily", "text/html", "",
"Location: " . $url);

Sample Usage

Redirect all 404 error pages to our front page
if (http.getResponseCode () == 404) {
http.redirect ("http://www.zeus.com/");

See also: http.sendResponse, http.changeSite

5.2.89 http.removeCookie(name)
Removes the named cookie from the incoming HTTP request.

http.removeCookie is a helper method that makes it easier to parse the HTTP Cookie
header and remove a particular cookie, rather than using http.getHeader() and
http.setHeader() directly.

Sample Usage

Remove the 'Priority' cookie

http.removeCookie ("Priority");

See also: http.getCookie, http.setCookie, http.removeResponseCookie

5.2.90 http.removeHeader(name)

Removes a named header if it exists in the request.

Sample Usage

Remove the 'Accept-Language' header if it exists

http.removeHeader ("Accept-Language");

See also: http.getHeader, http.addHeader, http.setHeader,
http.removeResponseHeader

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 163 OF 275

5.2.91 http.removeResponseCookie(name)

Removes a cookie from the HTTP response.

This function should be called in a response rule; it has no effect in a request rule.

Sample Usage

Remove the 'Priority' cookie

http.removeResponseCookie ("Priority");

See also: http.getResponseCookie, http.setResponseCookie,
http.removeCookie

5.2.92 http.removeResponseHeader(name)

Removes the named HTTP header from the HTTP response. The header name is
automatically translated to the correct case.

Sample Usage

Remove the 'Location' response header

http.removeResponseHeader ("Location");

See also: http.setResponseHeader, http.getResponseHeader,
http.addResponseHeader, http.scrubResponseHeaders,
http.removeHeader

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 164 OF 275

() ZeUs

5.2.93 http.responseHeaderExists(name)

Reports if a named header exists in the HTTP response. It is similar to
http.getResponseHeader(), but makes it possible to distinguish between a header not
being present and a header having no value.

The header name is automatically translated into the proper case for the lookup.

It returns 1 if the header exists, and 0 if it does not.

Sample Usage

if (http.responseHeaderExists("Location")) {
Web server is redirecting user to

another location

See also: http.getResponseHeader

5.2.94 http.scrubRequestHeaders(headerl, header2,...)

Limits the allowed HTTP request headers to a known set. The allowed headers can either
be passed in as a list or space separated in a single argument.

Care should be taken when using this function to ensure that the headers that are required
for connection handling are let through. At the very least, the following should be allowed:

Connection, Content-Length, Transfer-Encoding, Content-Type, Host

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 165 OF 275

() ZeUs

For a complete list of HTTP headers, refer to RFC2616. Protocols that extend HTTP, such as
WebDAYV, use other headers.

Sample Usage

Remove all headers, except the Connection,
Content-Type, Transfer-Encoding, Content-Length
and Host headers.
These 2 examples are identical
http.scrubRequestHeaders ("Host",
"Connection", "Content-Type",
"Transfer-Encoding", "Content-Length");
http.scrubRequestHeaders (

"host connection content-type transfer-encoding".

" content-length");

See also: http.removeHeader, http.scrubResponseHeaders

5.2.95 http.scrubResponseHeaders(headerl, header2,...)

Limits the allowed HTTP response headers to a known set. The allowed headers can either
be passed in as a list or space separated in a single argument.

Care should be taken when using this function to ensure that the headers that are required
for connection handling are let through. At the very least, the following should be allowed:

Connection, Content-Length, Transfer-Encoding, Location

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 166 OF 275

() ZeUs

For a complete list of HTTP headers, refer to RFC2616. Protocols that extend HTTP, such as
WebDAYV, use other headers.

Sample Usage

Remove all headers, except the Date, Connection,
Content-Type, Transfer-Encoding, Content-Length
and Location headers.
These 2 examples are identical
http.scrubResponseHeaders ("Date",
"Connection", "Content-Type",
"Transfer-Encoding", "Content-Length",
"Location");
http.scrubResponseHeaders (

"date connection content-type transfer-encoding".

" content-length location");

See also: http.removeResponseHeader, http.scrubRequestHeaders

5.2.96 http.sendResponse(code, type, body, headers)

Hands back an HTTP response to the client instead of balancing the request via a pool onto
a node. It generates a correct HTTP response from the response code, content type, body
data and headers supplied. Multiple headers should be separated with \r\n (note, however,
that your traffic manager may override some of these headers, e.g. the 'Connection’
header).

Sample Usage

Deny access and close connection
http.sendResponse("403 Permission Denied",
"text/html", "Go away",

"Set-Cookie: denied=Yes\r\nX-Foo: Bar");

See also: connection.close, connection.discard

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 167 OF 275

() ZeUs

5.2.97 http.setBody(body)

Sets the request body for this HTTP request to the supplied string, replacing any request

body already present.

This also updates the 'Content-Length' header in the request to the length of the new body

data.

Sample Usage

Change the order!
Sbody
Sbody
http.setBody ($body) ;

http.getBody () ;

= string.regexsub($body, "Buy", "Sell", "g"

)

See also: http.getBody, http.setResponseBody

5.2.98 http.setCookie(name, value)

Sets the value of the named cookie in the incoming HTTP request.

http.setCookie is a helper method that makes it easier to parse the HTTP Cookie header

and set the value of a particular cookie,
http.setHeader() directly.

rather than using

An HTTP 'Cookie' header can have multiple values, such as
Cookie: user-id=Joe; user-type=gold

Sample Usage

http.getHeader() and

Set the priority cookie

http.setCookie("Priority", "Gold");

See also:

http.getCookie, http.removeCookie, http.setResponseCookie

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 168 OF 275

() ZeUs

5.2.99 http.setHeader(name, value)

Sets the value of the named HTTP header, replacing any existing value if the header
already exists.

The header name is automatically translated to the correct case before it is added.

Note that the "Connection" header is manipulated by your traffic manager and that
changing its value in TrafficScript may not give the expected results.

Sample Usage

Add (or replace) an X-Forwarded-By header
http.setHeader ("X-Forwarded-By",

"Zeus ".sys.hostname ());

See also: http.addHeader, http.getHeader, http.headerExists,
http.removeHeader, http.setResponseHeader

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 169 OF 275

() ZeUs

\
\

/
‘\
’N
\

1

u“

f
9

5.2.100 http.setldempotent(resend)
Marks a request as resendable or non-resendable.

An jidempotent request has no detrimental side effects, so it can safely be submitted
multiple times. A simple page retrieval is generally idempotent. A non-idempotent request
has a side effect - for example, it may update a database, or initiate a purchase. The
HTTP/1.1 specification regards all GET, HEAD, PUT, DELETE, OPTIONS and TRACE requests
as idempotent.

Your traffic manager tags these requests as 'resendable’; if the request is submitted to a
back-end node and a correct response is not received, your traffic manager will resubmit
the request to another back-end node. All other requests, such as POST requests are not
resent if a back-end node fails to generate a correct response.

http.setldempotent() can override this behaviour. If 'resend' has a non-zero value, this
indicates that if the request is submitted to a back-end node and a correct response is not
received, your traffic manager should resubmit the request to another back-end node.

If 'resend' is zero, this indicates that the request should only be attempted against one
back-end node.

Note that a request cannot be resent if it has begun streaming data from the client to the
node before it detects the failure. To avoid this, you can read the entire request within the
TrafficScript rule, so that it is buffered in its entirety internally in the TrafficManager.

Sample Usage

This request can be resent

if (http.getMethod () == "POST") {
Force the Zeus Traffic Manager
to read the entire HTTP body
http.getBody () ;
Mark this request as resendable

http.setIdempotent(1);

See also: request.setldempotent

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 170 OF 275

() ZeUs

5.2.101 http.setMethod(method)

Sets the HTTP method, changing the original request.

Sample Usage

Force HTTP POSTs to GETs

if(http.getMethod () == "POST") {
http.setBody("");
http.setMethod("GET");

See also: http.getMethod
5.2.102 http.setPath(url)

Replaces the path portion of the request URL with the supplied value. If the replacement
value contains a '?', this function will also replace the query string; otherwise, any query
string is preserved. Any control characters are %-encoded in the replacement value.

Sample Usage

Make customer buy widget:

http.setPath("/purchase?product=widget");

See also: http.getPath
5.2.103 http.setQueryString(querystring)

Replaces the query-string portion of the request URL with the supplied replacement. Any
control characters in the replacement are %-encoded.

Sample Usage

Rewrite the query string
http.setQueryString($newqs) ;

See also: http.getQueryString, http.setRawQueryString,
http.getRawQueryString

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 171 OF 275

() ZeUs

5.2.104 http.setRawQueryString(querystring)

Replaces the query-string portion of the request URL with the supplied replacement. Unlike
http.setQueryString, control characters are not encoded.

Sample Usage

Rewrite the query string

http.setRawQueryString("foo=%20bar");

See also: http.getRawQueryString, http.setQueryString, http.getQueryString

5.2.105 http.setResponseBody(body, [transfer-encoding])

Sets the response body for this HTTP response to the supplied string, replacing any
response body already present.

This also updates the 'Content-Length' header in the response to the length of the new
body data. In addition the 'Content-Encoding' header is removed as we only ever set body
data which is not encoded or compressed. If the server is still sending the original
response body when this function is called, the connection to the server will be harmlessly
dropped.

The optional 'transfer-encoding' parameter indicates the encoding of the body data (for
example, 'chunked').

Sample Usage

Sbody = http.getResponseBody(0);
Sbody = string.regexsub($body, "Buy", "Sell", "g");
http.setResponseBody ($body) ;

See also: http.getResponseBody, http.setBody

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 172 OF 275

() ZeUs

5.2.106

http.setResponseCode(code, [message])

Sets the status code and message in the first line of the HTTP response.

Sample Usage

Not enough credit!
http.setResponseCode ("402", "Payment required");

See also: http.getResponseCode

5.2.107

http.setResponseCookie(name, value, [options])

Sets a cookie in the HTTP response. If the named cookie already exists, this function
replaces its value.

The options are a semi-colon separated list of cookie options, such as "domain", "path",
"expires" and "secure".

If the named cookie exists and no 'options' are provided, the current options for the
named cookie are preserved.

This function may be called from a request rule or a response rule.

Sample Usage

Set the priority cookie
http.setResponseCookie ("Priority", "Gold");
Set a username cookie, with various options
http.setResponseCookie ("Username", "mork",

"domain=example.com; path=/cgi-bin");

See also: http.getResponseCookie, http.removeResponseCookie,

http.setCookie

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 173 OF 275

() ZeUs

5.2.108 http.setResponseHeader(name, value)

Sets a HTTP header in the HTTP response that will be sent back to the client. If the header

already exists in the response, then it will be replaced with this new value.

Note that this function should not be used with the Connection header, i.e.
setResponseHeader("Connection", value) since it may not give the expected results.

The header name is automatically translated to the correct case before it is added.

Sample Usage

Change the server string
http.setResponseHeader ("Server",

"Zeus");

See also: http.addResponseHeader, http.getResponseHeader,

http.removeResponseHeader, http.setHeader

5.2.109 http.cache.disable()

Prevents this response from being cached. In a request rule, this additionally prevents a

cache lookup for this request.

Sample Usage

don't cache static content...

if($staticcontent) { http.cache.disable();

}

See also: http.cache.enable, http.cache.setkey

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 174 OF 275

5.2.110 http.cache.enable()

Performs the opposite function to http.cache.disable(), and re-enables the default caching
behaviour when the dynamic caching option in the virtual server is enabled.

Sample Usage

only cache what we explicitly enable

http.cache.disable(); # turn off everything

if (Sagent == "googlebot" || S$is appl) {
http.cache.enable() ;

See also: http.cache.disable, http.cache.setkey

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 175 OF 275

() ZeUs

5.2.111 http.cache.exists([poolname])

Returns 1 if the current request can (currently) be responded to from the cache, otherwise
0.

Note that even if the request is in the cache at the time of this call, it may be removed
from the cache by the time that TrafficScript processing has finished and the traffic
manager can send it. If a cached response must be guaranteed,
http.cache.respondIfCached() should be used.

A pool name can be provided as optional argument in order to make the lookup use the
specified pool. Without this argument, the lookup will use the pool previously selected with
pool.select or the virtual server's default pool.

This function always returns 0 if called in a response rule.

Sample Usage

Use a rate class only if the page is going to be
served from the backend.
if('http.cache.exists ()) {
The page cannot be served from the cache.
The traffic manager will have to get the page
from a back-end server, so rate-limit the
connection:

rate.use("rate");

See also: http.cache.enable, http.cache.disable, http.cache.respondIfCached,
pool.select

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 176 OF 275

() ZeUs

5.2.112

http.cache.respondlfCached([poolname])

Sends a cached response to the client without any further rule processing and without
connecting to a back-end server. If no match is found in the cache or if the request does
not allow cached responses, rule processing continues normally. If the response can be
served from the cache, no statements after this function call will be processed and the
client will get the cached page.

A pool name can be provided as optional argument in order to make the lookup use the
specified pool. Without this argument, the lookup will use the pool previously selected with
pool.select or the virtual server's default pool.

This function does nothing if called in a response rule.

Sample Usage

Use a rate class only if the page is going to be

served from the backend.
http.cache.respondIfCached() ;
#
If we get here, the page could not be served
from the cache. The traffic manager will have
to get the page from a back-end server, so
rate-limit the connection:
rate.use("rate");
See also: http.cache.enable, http.cache.disable, http.cache.exists,

pool.select

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 177 OF 275

() ZeUs

5.2.113 http.cache.setkey()

Allows multiple variants of the same URL to be considered distinct objects, even if the
standard 'Vary' RFC semantics would consider the pages identical. Cached objects will be
stored with this key, and subsequent requests for the same URL will only match if the
same key is provided. An example use is to provided different cached content based on a
portion of the User-Agent field of the request. Note that successive uses of this function
will overwrite the previous use rather than append the new key to it.

Sample Usage

internal/external users see different pages

http.cache.setkey(Sam internal user);

See also: http.cache.enable, http.cache.disable

5.2.114 http.compress.disable()

Stops this HTTP response from being compressed. This function overrides the Virtual
Server Content Compression settings, so this is useful for stopping particular MIME types
for certain browsers from being compressed.

Sample Usage

Don't compress text/css pages
if ($Scontenttype == "text/css") {
http.compress.disable() ;

See also: http.compress.enable

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 178 OF 275

() ZeUs

5.2.115 http.compress.enable()

Allows this individual HTTP response to be compressed. If this function is called for an
HTTP response, then the Virtual Server settings for Content Compression are ignored, and
the response will be compressed, assuming that the client supports compression. This
function return 0 if it successfully enables compression

Sample Usage

Compress all text pages for Gecko
if (string.startswith(Scontenttype, "text/") &&
string.contains (Suseragent, "Gecko")) {

http.compress.enable() ;

See also: http.compress.disable

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 179 OF 275

() ZeUs

5.2.116 http.request.get(url, [headers], [timeout])

Issues an HTTP request for a remote web page and returns the body of the page
requested. $1 is set to the HTTP response code (e.g. 200 for OK), or is 0 if there was an
error. $2 is set to the Content-Type of the response (or an error message if there was an
error). $3 is set to the content-headers of the response, in the format: [\r\n]*. $4 is set to
the first line of the HTTP response. The entire original response may be reconstructed as
$4."\r\n".$3."\r\n".$body, where $body is the result of http.request.get.

HTTPS pages can be requested by using the https:// prefix for the url.

A timeout parameter can be given (in seconds). If the request does not complete in this
time, then an error will be given instead.

Requests made with http.request.get() will use keepalive connections to the destination
server. Provided the request was completed successfully, these keepalive connections will
be re-used by any invocation of http.request.get() or http.request.head() to the same
destination host:port, from any rule, in any virtual server. If the request is to a node in a
pool, the connection will be shared with other requests your traffic manager makes to the
same node. If the request made with http.request.get() was unsuccessful, your traffic
manager closes the connection.

Sample Usage

Sbody = http.request.get("https://www.example.com/",
"Cookie: foo=bar");

if (81) {
http.sendResponse ($1, $2, Sbody, "");

} else {

log.info("An error occurred: " . $2);

See also: http.request.head, http.request.post

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 180 OF 275

() ZeUs

5.2.117 http.request.head(url, [headers], [timeout])

Issues an HTTP HEAD request for a remote web page. $1 is set to the HTTP response code
(e.g. 200 for OK), or is 0 if there was an error. $2 is set to the Content-Type of the
response (or an error message if there was an error). $3 is set to the content-headers of
the response, in the format: [\r\n]*. $4 is set to the first line of the HTTP response. The
entire original response may be reconstructed as $4."\r\n".$3."\r\n".$body, where $body
is the result of http.request.get.

HTTPS pages can be requested by using the https:// prefix for the url.

A timeout parameter can be given (in seconds). If the request does not complete in this
time, then an error will be given instead.

Requests made with http.request.head() will use keepalive connections to the destination
server. Provided the request was completed successfully, these keepalive connections will
be re-used by any invocation of http.request.head() or http.request.get() to the same
destination host:port, from any rule, in any virtual server. If the request is to a node in a
pool, the connection will be shared with other requests your traffic manager makes to the
same node. If the request made with http.request.head() was unsuccessful, your traffic
manager closes the connection.

Sample Usage

Check that this site is working
http.request.head("http://www.example.com/") ;
if($1 !'= 200) {

pool.use("Backup site");

See also: http.request.post

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 181 OF 275

() ZeUs

5.2.118 http.request.post(url, POST data, [headers], [timeout])

Issues an HTTP POST request for a remote web page, and returns the body of the page
requested. $1 is set to the HTTP response code (e.g. 200 for OK), or is 0O if there was an
error. $2 is set to the Content-Type of the response (or an error message if there was an
error). $3 is set to the content-headers of the response, in the format: [\r\n]*. $4 is set to
the first line of the HTTP response. The entire original response may be reconstructed as
$4."\r\n".$3."\r\n".$body, where $body is the result of http.request.post.

HTTPS pages can be requested by using the https:// prefix for the url.

A timeout parameter can be given (in seconds). If the request does not complete in this
time, then an error will be given instead.

Requests made with http.request.post() will always create a new connection to the
destination server and will not use an existing connection. After a request made with
http.request.post() has finished successfully, its connection can be re-used by any
invocation of http.request.get() or http.request.head() to the same destination host:port,
from any rule, in any virtual server. If the request was to a node in a pool, the connection
will also be shared with other requests your traffic manager makes to the same node. If
the request made with http.request.post() was unsuccessful, your traffic manager closes
the connection.

Sample Usage

Sbody = http.request.post ("http://www.example.com/",
"data",
"Cookie: foo=bar\nContent-Type: text/plain");
if(81) |
http.sendResponse ($1, $2, Sbody, "");

See also: http.request.get, http.request.head

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 182 OF 275

() ZeUs

5.2.119 http.stream.continueFromBackend([data])

Stops streaming any data from the current rule and lets your traffic manager send
remaining data from backend. The 'data’' parameter can be used to send the last block to
be streamed. Rule processing will finish and no further statements in this or subsequent
rules will be executed. Unlike http.stream.finishResponse(), any data coming from the

backend server will continue to be sent from the backend to the client normally.

Note that this function will behave exactly like http.stream.finishResponse() if run from a

request rule.

Sample Usage

http.stream.startResponse (
"200", "text/html"™, "", "Server: Zeus");
while(1) {
read full lines but at most 4k of data:
Sdata = http.stream.readBulkResponse (4096, "\n");
if(string.find($data, "foo") >= 0) {
Sdata = string.replace($data,"foo","bar");
Job done, exit now. Any remaining body data
will continue to be sent from backend.
http.stream.continueFromBackend ($data);
}
stream data to client if not found.
http.stream.writeResponse ($data);
}

http.stream.finishResponse () ;

See also: http.stream.startResponse, http.stream.readBulkResponse,

http.stream.readResponse, http.stream.writeResponse,
http.stream.finishResponse

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 183 OF 275

() ZeUs

5.2.120 http.stream.finishResponse([data])

Indicates that 'data' is the last block to be streamed for the current transaction. Rule
processing will stop after http.stream.finishResponse() has been called, i.e. the remaining
statements of the present rule will not be evaluated and no subsequent rules will be run.

Sample Usage

http.stream.startResponse (
"200", "text/html", "", "Server: Zeus");
while(1) {
read full lines but at most 4k of data:
Sdata = http.stream.readBulkResponse (4096,
if($data == "")
break; # server has finished the response

invert server's logic:

http.stream.writeResponse ($data);

}

http.stream.finishResponse () ;

Sdata = string.replaceAllI(S$data, "yes", "no");

n\n") 2

See also: http.stream.startResponse, http.stream.readBulkResponse,

http.stream.readResponse, http.stream.writeResponse,

http.sendResponse

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 184 OF 275

() ZeUs

5.2.121

http.stream.readBulkResponse(count, [delimiter])

Reads (and consumes) data from the server, so that TrafficScript can manipulate the data
and send a modified version to the client.

Reads the number of bytes specified by 'count' from the body of the HTTP response
supplied by the server. Data from the response is only returned up to and including the
last occurrence of 'delimiter' if a non-empty delimiter has been specified. Unlike
http.getResponseBody(), it also removes the data returned from the server's response.
When the end of the response from the server has been reached, an empty string is
returned.

If the delimiter partially matches at the end of the specified number of bytes, the data
returned will include the full delimiter (thus returning slightly more data than specified). If
the delimiter is not found in the specified humber of bytes, then the specified humber of
bytes of data will be returned.

Sample Usage

Stream a HTTP response back, changing the content
as it is read in.
http.stream.startResponse (

"200", "text/html", "",
while(1) {

"Server: Zeus");

read several full lines but at most 4k of data:
Sdata = http.stream.readBulkResponse(4096, "\n");
if($data == "")
break; # server has finished the response

invert server's logic:
Sdata = string.replaceAllI(S$data, "yes", "no");
http.stream.writeResponse ($data);

}

http.stream.finishResponse () ;

See also: http.stream.readResponse, http.getResponseBody,
http.stream.writeResponse, http.stream.finishResponse,

http.stream.startResponse

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 185 OF 275

() ZeUs

— el

[EE——

— —_— —
— e

e
e —
o —

5.2.122

Similar to http.stream.readBulkResponse(), but only returns response body data up to and
including the first occurrence of delimiter. The two functions behave identically if no

B —

http.stream.readResponse(count, [delimiter])

delimiter is provided.

Sample Usage

}

http.stream.startResponse (

"200", "text/html", "", "Server: Zeus");

while(1) {

read full line but at most 4k of data:
Sdata = http.stream.readResponse(4096, "\n");
if($data == "")
break; # server has finished the response
invert server's logic:
Sdata = string.replaceAllI(S$data, "yes", "no");

http.stream.writeResponse ($data);

http.stream.finishResponse () ;

See also:

http.stream.readBulkResponse, http.getResponseBody,
http.stream.writeResponse, http.stream.finishResponse,
http.stream.startResponse

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 186 OF 275

() ZeUs

5.2.123 http.stream.startResponse(resp_code, content_type,

[content_length, headers])

Sets up an HTTP response from which data can be streamed Ilater by calling
http.stream.writeResponse(). http.stream.startResponse() can only be called once per
HTTP transaction. Only 'resp_code' and ‘'content_type' are mandatory arguments.
However, it is recommended to specify the 'content_length' if possible. If it is provided and
a valid integer, your traffic manager will not stream more than that number of bytes. A set
of headers (separated by "\r\n") can be provided in the optional fourth argument. In a
response rule, if no fourth argument is given, the response headers from the back-end will
be sent on to the client (note, however, that your traffic manager may override some of
these headers, e.g. the 'Connection' header)

Sample Usage

http.stream.startResponse (
"200", "text/html", "",
"Server: Zeus\r\nX-Hello: World");
while(1) {
read full lines but at most 4k of data:
Sdata = http.stream.readBulkResponse(4096, "\n");
if ($data == "")
break; # server has finished the response
invert server's logic:
Sdata = string.replaceAllI(S$data, "yes", "no");
http.stream.writeResponse ($data);
}

http.stream.finishResponse () ;

See also: http.stream.writeResponse, http.stream.finishResponse,
http.stream.readBulkResponse, http.stream.readResponse,
http.sendResponse

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 187 OF 275

() ZeUs

5.2.124 http.stream.writeResponse(data)

Sends the data in the 'data’ argument to the client. http.stream.writeResponse() can be
called multiple times but http.stream.startResponse() must have been called beforehand.

Sample Usage

http.stream.startResponse (
"200", "text/html",
while(1) {

""", "Server:

Sdata =
if($data == "")

http.stream.readBulkResponse (

invert server's logic:
Sdata = string.replaceAllT (
http.stream.writeResponse ($data);

}

http.stream.finishResponse () ;

Zeus") ;

read full lines but at most 4k of data:

break; # server has finished the response

Sdata, "yes",

4096, "\n");

"no") ;

See also: http.stream.startResponse, http.stream.readBulkResponse,
http.stream.readResponse, http.stream.finishResponse,
http.sendResponse

5.2.125 java.run(Java Extension class name, [options])

Runs a named Java Extension. The Java Extension class name must be given, and extra
options can also be supplied to the Extensions. (These are supplied as the 'args' attribute

in the Java Extension API).

Sample Usage

java.run("com.zeus.UserVerify", Suser,

Spassword) ;

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 188 OF 275

() ZeUs

5.2.126 log.error(message)

Writes an error message to the traffic managers's event log file. This log can be viewed
through the UI.

Sample Usage

log.error("Insert coffee to continue");

See also: log.info, log.warn, event.emit

5.2.127 log.info(message)

Writes an informational message to the traffic manager's event log file. This log can be
viewed through the UI.

Sample Usage

log.info("Everything is OK");

See also: log.warn, log.error, event.emit

5.2.128 log.warn(message)

Writes a warning message to the traffic manager's event log file. This log can be viewed
through the UL

Sample Usage

log.warn("There may be trouble ahead");

See also: log.info, log.error, event.emit

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 189 OF 275

() ZeUs

5.2.129

net.dns.resolveHost(hosthame)

Resolves a hostname into an IPv4 address, using the DNS name servers configured on the
local system. If the lookup fails, an empty string is returned.

Sample Usage

See also:

5.2.130

Resolves a hostname into an IPv6 address, using the DNS nam

Do a double-dns lookup

Srip = request.getRemotelIP () ;

Srhost = net.dns.resolveIP(S$Srip);
$ip = net.dns.resolveHost($Srhost);
if($ip != $rip) {

log.warn("Double lookup failed");

net.dns.resolvelP, net.dns.resolveHost6

net.dns.resolveHosté(hosthname)

local system. If the lookup fails, an empty string is returned.

Sample Usage

See also:

e servers configured on the

Do a double-dns lookup for an IPv6 address

Srip = request.getRemotelIP () ;

Srhost = net.dns.resolveIP($rip);
$ip = net.dns.resolveHost6($rhost);
if($ip != S$Srip) {

log.warn("Double lookup failed");

net.dns.resolveHost, net.dns.resolvelP

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 190 OF 275

() ZeUs

5.2.131

net.dns.resolvelP(IP address)

Resolves an IP address to a hostname, using the DNS name servers configured on the

local system.

Returns a hostname, or the IP address if the address cannot be resolved. An empty string

is returned if the p

Sample Usage

arameter is not a valid IP address.

Srip
Srhost

re

log.info (

quest.getRemoteIP () ;
net.dns.resolvelIP(Srip);

"Request from ".S$rhost);

See also:

5.2.132

net.dns.resolveHost, net.dns.resolveHost6

pool.activenodes(Pool)

Returns the number of nodes that are alive in the named pool. This will not include any
nodes that have been marked as 'draining'.

Sample Usage

Throw a

}

pool.

though.

drops to below 3

if (pool.activeNodes (
log.warn (

If there are less than two nodes,

Better to use priority nodes in a pool for this

if (pool.activeNodes (

pool.use("database-offsite");
} else {
pool.use("database");

warning if the number of live nodes

"database") < 3

"Database nodes are low"

)
) ;

{

use a different

"database") < 2) {

See also:

pool.use, pool.select

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 191 OF 275

() ZeUs

5.2.133 pool.checknode(Pool, Host, Port)

Query the pool to determine the status of a node. Will return one of
"NOTINPOOL","NOSUCHPOOL","NOSUCHHOST","DEAD" "ACTIVE","DISABLED","DRAINING"

Sample Usage

$status = pool.checknode ("FTP Server","appl",21);
if ($Sstatus != "Active") {
log.warn ("FTP Server appl unavailable ".S$status);
}
5.2.134 pool.select(Pool, [Host, Port])

Selects a pool to load-balance this connection with. By default, the pool name should be a
literal string (i.e. not dynamically generated and not containing any variables), however, if
you enable the "trafficscript!variable_pool_use" global setting variables can be used too.
Please refer to the Troubleshooting section of the Zeus TrafficScript Overview and
Reference Manual for more information about this setting. Unlike pool.use(), your traffic
manager will continue to process further request rules after this function.

If the pool named does not exist, your traffic manager will log a warning message.

Optionally, a specific machine can be specified that will be used to forward the request on
to. This machine does not have to be in the pool selected, or in fact in any pool. In this
mode, the selected pool is used only for its configuration settings (e.g. timeout values, SSL
encryption options, etc.)

Sample Usage

Use the pool named 'Content Pool'
pool.select ("Content Pool");
Send this request to www.zeus.com:380,

using config from pool 'Zeus'

pool.select("Zeus", "www.zeus.com", 80);
See also: pool.use

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 192 OF 275

() ZeUs

5.2.135 pool.use(Pool, [Host, Port])

Selects a pool to load-balance this connection with, and stops processing any more rules.
It must only be used in request rules.

By default the pool name should be a literal string, however, if you enable the
"trafficscript!variable_pool_use" global setting, variables can be used too. Please refer to
the Troubleshooting section of the Zeus TrafficScript Overview and Reference Manual for
more information about this setting.

If the pool named does not exist, your traffic manager will log a warning message and use
the default pool configured for the virtual server.

Optionally, a specific machine can be specified that will be used to forward the request on
to. This machine does not have to be in the pool selected, or in fact in any pool. In this
mode, the selected pool is used only for its configuration settings (e.g. timeout values, SSL
encryption options, etc.)

Sample Usage

Use the pool named 'Content Pool'
pool.use("Content Pool");
Send this request to www.zeus.com:80,

using config from pool 'Zeus'

pool.use("Zeus", "www.zeus.com", 80);
See also: pool.select

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 193 OF 275

() ZeUs

5.2.136 rate.getbacklog(class_name, [context])

Returns the number of connections that are currently waiting to be released by the

supplied rate class.

Sample Usage

Sbacklog = rate.getbacklog("gold-user",
request.getRemoteIP ());
if ($backlog > 10) {
Tell the customer to come back later
http.sendResponse("503 Service Unavailable",
"text/html", "Go away",
"Retry-After: 10");

See also: rate.use

5.2.137 rate.use(class_name, [context])

Immediately queues a connection using the named rate class.

The connection and the current TrafficScript rule is stalled until the rate class releases it,
according to the rate limits defined in the class. When the connection is released, the

rate.use() function returns and the TrafficScript rule continues to execute.

If rate.use() is called with the optional 'context' value, it uses a new rate class which
inherits all of the rate settings from the named rate class. All connections called with the
same 'context' value use the same new rate class. This allows you to shape connections
based on arbitary data, such as a user name or source IP address, shaping connections

from different users or source IPs independently.

If the connection has passed through the class successfully then the value 1 is returned. If
the connection times out while it is queued, then the TrafficScript rule is abandoned. If the
connection could not be queued because an invalid rate class name was provided,

rate.use() returns 0.

Sample Usage

rate.use ("protect database");
rate.use("limit user",

http.getCookie("SessionID"));

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 194 OF 275

() ZeUs

5.2.138 rate.use.noQueue(class_name, [context])

Checks if this connection will exceed the rate limits of the named rate class. If connection
is within rate limits, a value of 1 is returned and the connection is added to rate usage
data. If usage has exceeded rate limits, a value of 0 is returned. If the rate class does not

exist, a value of -1 will be returned.

Optionally a context value can be used to check rate limits based on a context, for
example, rate limits for a specific client IP address. See rate.use for more details on

context.

Unlike rate.use(), this will not queue connections if the rate limit is exceeded.

Note that calling rate.use() after rate.use.noQueue() will mean that the connection is

counted twice, halving the allowed rate.

Sample Usage

Suse = rate.use.noQueue ("protect database");
usage is over rate limits.
if (Suse ==) {
http.sendResponse("503 Service Unavailable",
"text/html", "Go away",
"Retry-After: 10");

connection.discard() ;

log.info("No queueing"”);
} else { # Rate class does not exist

log.info("Rate class doesn't exist");

} else if($Suse > 0){ # usage is within rate limits

See also: rate.use

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 195 OF 275

() ZeUs

5.2.139 request.avoidNode()

Indicates that the named node should be avoided if at all possible.

When picking a node to use for a request, the traffic manager will not use any nodes that
have been named by request.avoidNode() unless session persistence mandates it, or
unless there are no other nodes available.

Sample Usage

1if we get a 503 Too Busy response, retry
if(http.getResponseCode () == 503) {
if (request.getRetries() < 3) {
request.avoidNode (connection.getNode ());

request.retry () ;

See also: request.retry, request.getRetries, connection.getNode

5.2.140 request.endsAt(offset)

Marks the end of the current request. Any more data read in from the network is not
handled until the next request has started to be handled.

This function is useful to synchronise requests and responses. An example of its use would
be for a line-oriented protocol such as POP3, where you wish to process each command.

It returns the entire request.

This function allows you to program layer-7 intelligence to correctly parse and manage
generic TCP protocols.

Sample Usage

get one line from input

Sreq = request.getLine();

this is the end of the current request
request.endsAt (string.len(Sreq));

Note: request.endsAt will return the request,

but we've already got this in S$req

See also: request.endsWith

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 196 OF 275

() ZeUs

5.2.141

request.endsWith(regex)

Marks the end of the current request. Any more data read in from the network is not
handled until the next request has started to be handled.

This function is useful to synchronise requests and responses. An example of its use would
be for a line-oriented protocol such as POP3, where you wish to process each command.

It returns the entire request.

This function allows you to program layer-7 intelligence to correctly parse and manage
generic TCP protocols.

Sample Usage

this is the end of the current request

Sreq = request.endsWith("\n");

See also: request.endsAt
5.2.142 request.get([count])

Returns the first 'count' bytes of data provided by the client in the current request. If no
count parameter is provided, all data read so far is returned, which may be none unless
request.get() has previously been called with a positive count. If you cannot determine
how much data to read, use request.getLine or request.endsWith instead.

Warning: you can stall a connection by asking it to read more data than the remote client
will provide. Combine this with request.getLength() or request.getlLine() to reliably read
data from a connection. For HTTP, you are required to use the HTTP specific functions like
http.getBody() to read the request.

Sample Usage

Get a length

Sbuf = request.get(4);

$1 = string.bytesToInt(S$buf);

Now we know how much more data to ask for

Sdat = request.get(4 + S$1);

request.getLength, request.getlLine, request.endsWith, request.set,
response.get

See also:

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 197 OF 275

() ZeUs

5.2.143 request.getBandwidthClass()

Returns the current bandwidth class for the connection to the backend node, or an empty
string if no class is set.

Sample Usage

Sclass = request.getBandwidthClass () ;

See also: request.setBandwidthClass, response.setBandwidthClass,
response.getBandwidthClass

5.2.144 request.getDestIP()

Returns the original IP address that the client attempted to connect to. This will be the
same as request.getlLocalIP() unless the connection was redirected via firewall rules (e.g.
using iptables on Linux)

Sample Usage

Get the local IP address, such as "10.1.4.21" or
"2001:200::8002:203:47ff:fea5:3085"
Sip = request.getDestIP();

See also: request.getDestPort, request.getRemotelP, request.getRemotePort

5.2.145 request.getDestPort()

Returns the original network port humber that the client attempted to connect to. This will
be the same as request.getLocalPort() unless the connection was redirected via firewall
rules (e.g. using iptables on Linux)

Sample Usage

Get the port number on the traffic manager,
such as 80
Sport = request.getDestPort () ;

See also: request.getDestIP, request.getRemotePort, request.getRemotelP

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 198 OF 275

() ZeUs

5.2.146 request.getLength()

Returns the number of bytes of data already received from the client. This can be
combined with request.get() to reliably read data from a connection without stalling if no
data is available.

Sample Usage

Sdata = request.get (request.getLength());
See also: request.get, response.getlLength
5.2.147 request.getLine([regex], [offset])

Returns a line of request data provided by the client. The line is terminated by the supplied
regular expression, or by '\n'. If 'offset' is provided, request.getLine() returns the data
from that offset to the terminating expression. The terminating expression is included in
the returned string.

When request.getline() returns, the variable $1 is updated to point to the start of the next
line in the datastream.

You can iterate through the lines of request data by using $1 as the iterator variable.

To prevent excessive data usage, if the |line ending is not found within
trafficscript!memory_warning bytes (configurable on the Global Settings page), then that
many bytes will be returned.

Sample Usage

Process the lines in the request until an empty
line is found
$line = request.getLine("\n");
while($line != "\n") {
process $line...

$line = request.getLine("\n", $1);

See also: request.get, response.getlLine

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 199 OF 275

() ZeUs

5.2.148 request.getLocallP()

Returns the IP address that the client connected to, i.e. the address local to this machine.

Sample Usage

Get the local IP address, such as "10.1.4.21" or
"2001:200::8002:203:47ff:fea5:3085"
$ip = request.getLocallP () ;

See also: request.getLocalPort, request.getDestIP, request.getRemotelP,
request.getRemotePort, response.getLocallP,
response.getlLocalPort, response.getRemotelP,
response.getRemotePort

5.2.149 request.getLocalPort()

Returns the network port number that the client connected to. (e.g. port 80 is normal for a
web server)

Sample Usage

Get the local port, such as 80
Sport = request.getLocalPort () ;

See also: request.getlLocallP, request.getRemotePort, request.getDestPort,
request.getRemotelP, response.getlLocalPort, response.getLocallP,
response.getRemotePort, response.getRemotelP

5.2.150 request.getLogEnabled(enabled)

Returns 1 if logging is enabled for this request, and 0 otherwise.

Sample Usage

if (request.getLogEnabled()) {
http.addResponseHeader ("X-Logged", "Yes");

See also: request.setlLogEnabled

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 200 OF 275

() ZeUs

5.2.151 request.getRemotelP()

Returns the remote IP address of the client.

Sample Usage

Get the remote IP address, such as "10.1.4.21"
or "2001:200::8002:203:47ff:fea5:3085"
$ip = request.getRemoteIP () ;

See also: request.getRemotePort, request.getLocallP, request.setRemotelP,
request.getlLocalPort, response.getRemotelP,
response.getRemotePort, response.getlLocallP,
response.getlLocalPort

5.2.152 request.getRemotePort()

Returns the remote network port of the client's connection.

Sample Usage

Get the remote port, such as 20427

Sport = request.getRemotePort () ;

See also: request.getRemotelP, request.getLocalPort, request.getlLocallP,
response.getRemotePort, response.getRemotelP,
response.getlocalPort, response.getlLocallP

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 201 OF 275

() ZeUs

5.2.153 request.getRetries()

5.2.

Returns the number of times that this request has been explicitly retried by
request.retry().

Sample Usage

Scode = http.getResponseCode () ;
if(Scode == 404 || S$code >= 500) {
if (request.getRetries() < 3) {
Avoid the current node when we retry,
if possible
request.avoidNode (connection.getNode ());
request.retry () ;
} else {

http.sendResponse("302 Redirect",

"text/plain", "", "Location: /");
}
}
See also: request.retry, request.isResendable, pool.select
154 request.getToS(Type of Service)

Returns the Type of Service (ToS) of traffic going to the server. The return value is either
"LOWDELAY", "THROUGHPUT", "RELIABILITY" or "NONE".

Sample Usage

if(request.getToS() != "LOWDELAY") {

connection.sleep(1000);

See also: response.getToS, request.setToS

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 202 OF 275

() ZeUs

5.2.155 request.isResendable()

Test if it is possible to resend this request to a different node. It is only possible to resend
a request if the entire request has been buffered up in the traffic manager, for example, by
explicitly reading it in a request rule.

If the request was streamed through to the client, for example, as a large HTTP POST, it
will not have been buffered and therefore cannot be resent.

Note that request.isResendable detects if it is possible to resend a request;
request.setldempotent can be used to tell the traffic manager not to automatically resend
a request if it fails.

Sample Usage

if (request.isResendable()) {
log.info("Retrying request");

request.retry();

See also: request.retry, request.getRetries, request.setidempotent

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 203 OF 275

() ZeUs

5.2.156 request.retry()

Retry the request (using the currently selected pool). Load-balancing and session
persistence decisions are recalculated, and the request is resubmitted - possibly to the
same node as previously, although request.avoidNode() can prevent this.

If request.retry() is called, any request rules are not run again. When a new response is
collected after request.retry(), the response rules are run again.

The response rule can modify the request in before resubmitting it.

It is only generally possible to resend a request if the entire request was read before the
request rules completed. Otherwise, request data will have been streamed to the server
and not cached. Use request.isResendable() to test for this.

request.getRetries() returns the number of times this request has already been tried.

On success, request.retry() does not return, but the response rules will be run again on
the new response. On failure, request.retry() returns 0. request.retry() will do nothing if
used in a request rule.

Sample Usage

Scode = http.getResponseCode () ;
if($code == 404 || Scode >= 500) {
if (request.getRetries() < 3) {
Avoid the current node when we retry,
if possible
request.avoidNode (connection.getNode ());
request.retry () ;
} else {
http.sendResponse("302 Redirect",

"text/plain", "", "Location: /");

See also: request.isResendable, request.getRetries, pool.select

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 204 OF 275

() ZeUs

5.2.157 request.sendResponse(Data)

Writes the provided data directly back to the client.

Any data that has been read is discarded, and nothing is forwarded to the back-end node.
Once the response data has been written, control returns to the next request.

If you are managing HTTP traffic the http.sendResponse() function should be used instead.

Sample Usage

Send a response

request.sendResponse ("530 Login incorrect\r\n");

See also: connection.discard, http.sendResponse, response.set,
response.append, connection.close

5.2.158 request.set(request data)

Replaces the input data read from the client with the provided string.

This is a low-level routine that should be used with care. For protocols with their own
higher-level protocol managers (e.g. HTTP), use the higher level routines to alter the input
data (e.g. http.setHeader() and http.setBody()).

Sample Usage

Sdata = request.get();
Sdata = string.regexsub($data, "From", "To", "g");

request.set (S$data);

See also: request.get, response.set

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 205 OF 275

() ZeUs

5.2.159 request.setBandwidthClass(name)

Sets the bandwidth class for the current connection to the backend node. Providing an
empty class name removes the bandwidth class from the connection. It returns zero if an
error occurs (for example, if the bandwidth class does not exist), and 1 otherwise.

Sample Usage

request.setBandwidthClass("gold customers");

See also: request.getBandwidthClass, response.setBandwidthClass,
response.getBandwidthClass

5.2.160 request.setldempotent(resend)

Marks a request as resendable or non-resendable.

An idempotent request has no detrimental side effects, so it can safely be attempted
multiple times. A non-idempotent request has a side effect - for example, it may update a
database, or initiate a purchase.

By default, all non-HTTP requests are marked as idempotent. If a back-end node fails to
generate a correct response when a request is initially forwarded to it, an attempt will be
made to resend the request to another node.

request.setldempotent() can override this behaviour. If 'resend' is zero, this indicates that
the request should only be attempted against one back-end node.

If 'resend' has a non-zero value, this indicates that if a request is made to a back-end
node and a correct response is not received, the request should be retried against another
back-end node.

Note that a request cannot be resent once it has begun streaming data between the client
and the node. Additionally, UDP connections cannot be marked as resendable (the UDP
client application should handle failed UDP responses).

Sample Usage

Mark this request as resendable

request.setIdempotent (1);

See also: http.setldempotent

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 206 OF 275

() ZeUs

5.2.161 request.setLogEnabled(enabled)

Enables or disables logging for the current request. Note that if logging for the current

virtual server is disabled, then this function cannot currently enable it.
Returns 1 if logging is now enabled, and 0 if it is now disabled.

Sample Usage

Only log errors from the web server
if (http.getResponseCode () < 400) {
request.setLogEnabled(0);

See also: request.getLogEnabled

5.2.162 request.setRemotelP()

Sets the remote IP address of the client. This function should be used with care, as it will
alter what is logged in request logs and the address seen by a back-end node in
'transparent' mode. 0 is returned if the IP address is invalid, and 1 otherwise.

Sample Usage

Set the remote IP address, such as "10.1.4.21"
request.setRemoteIP("10.1.4.21");
request.setRemoteIP ("2001:200::3085");

See also: request.getRemotelP

5.2.163 request.setToS(Type of Service)

Sets the Type of Service (ToS) flags of traffic going to the server. Valid options are
"LOWDELAY", "THROUGHPUT", "RELIABILITY" or "NONE". ToS flags may be used by

network equipment to change how they route network traffic.

Sample Usage

request.setToS ("LOWDELAY") ;

See also: response.setToS, request.getToS

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 207 OF 275

() ZeUs

5.2.164

5.2.165

request.skip([count])

Removes the specified number of bytes from the start of the request provided by the
client. This can be used in combination with request.get() and request.getLine() to stream

data from a client, or to alter a request before passing it on to a server.

Successive calls to this function will remove further data.

Sample Usage

Skip the first 1K of data
request.skip(1024);
Now skip another 1K

request.skip(1024);

See also: request.getLength, request.getline, request.set, request.get

resource.exists(filename)

Checks whether or not the named file exists in ZEUSHOME/zxtm/conf/extra/. If it exists 1

is returned, 0 otherwise.

Sample Usage

Test if the file exists
if (resource.exists("myfile")) {
... Pprocess resource
}
See also: resource.get, resource.getMD5

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 208 OF 275

() ZeUs

5.2.166 resource.get(filename)

Returns the contents of a named file stored in the ZEUSHOME/zxtm/conf/extra/ directory.
If the file doesn't exist, then an empty string is returned. Note that subdirectories of

conf/extra are not supported.

Resources are pre-loaded into memory, so this call does not cause the file to be reloaded.

Sample Usage

Read the contents of the 'info'
as a new header.

http.addheader ("X-Info",

resource.get ("info"));

file and add them

5.2.167 resource.getLines(filename)

Returns the contents of a named file stored in the ZEUSHOME/zxtm/conf/extra/ directory
as an array. If the file doesn't exist, then an empty array is returned. Note that

subdirectories of conf/extra are not supported.

Resources are pre-loaded into memory, so this call does not cause the file to be reloaded.

Sample Usage

Read the contents of the 'info'
process them line-by-line
Sinfo = resource.getLines("info"
foreach($line in $info) {

...

file and add

)

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 209 OF 275

() ZeUs

5.2.168 resource.getMD5(filename)

Returns the MD5 of the current contents of the file in ZEUSHOME/zxtm/conf/extra/. If the

file doesn't exist, an empty string is returned.
File MD5s are cached to speed up this call.

Sample Usage

Get the MD5 of the file

Smd5 = resource.getMD5("myfile");

See also: resource.exists, resource.get

5.2.169 resource.getMTime(filename)

Returns the time that the named file in ZEUSHOME/zxtm/conf/extra/ was last modified, in
seconds since the epoch (i.e. UNIX time). If the file doesn't exist, 0 is returned.

Sample Usage

Find out the time the file was last modified

Smtime = resource.getMTime ("myfile");

See also:

resource.exists, resource.get, resource.getMD5, sys.timeToString,

sys.time

5.2.170 response.append(response data)

Appends the provided string to the response data.

This is a low-level routine that should be used with care. For protocols with their own
higher-level protocol managers (e.g. HTTP), you must use the higher level routines to alter
the input data (e.g. http.setResponseHeader() and http.setResponseBody()).

Sample Usage

response.append (

"I always have to have the last word.");

See also: response.set

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 210 OF 275

() ZeUs

5.2.171 response.close()

Immediately closes the connection to the back-end node. Any response data that has
already been read from the server will be forwarded to the client, but no more response
data will be read.

Your traffic manager will reconnect to a back-end node when it next needs to forward
request data to it; the back-end node is specified by either calling pool.use() or
pool.select() in a request rule, or by the default pool.

Sample Usage

if ($Sneednewnode) {

response.close () ;

pool.use("servers");
}
See also: connection.close, connection.discard, pool.use, pool.select
5.2.172 response.flush(count)

Transfers the first count bytes of the response back to the client. These bytes are removed
from the underlying response buffer. If count is not specified, all current response data is
flushed.

This function is useful in generic client- and server-first protocols, to synchronise
responses with the next request. This may be necessary if your traffic manager is likely to
respond directly to some requests, and the back-end node responds to others.

Sample Usage

keep flushing response data until we get
an empty line...
Sres = response.getLine () ;
while($res != "\n") ({
response.flush(string.len($res));
Sres = response.getlLine () ;
}
the remainder of the response buffer will be

flushed when all response rules complete

See also: response.get, response.getLine

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 211 OF 275

() ZeUs

5.2.173 response.get([count])

Returns the first 'count' bytes of data provided by the server in the current response. If
you do not supply a count parameter, then the entire response will be read in.

Warning: you can stall a connection by asking it to read more data than the back-end
server will provide. Combine this with response.getLength() or response.getLine() to
reliably read data from a connection. For HTTP, you must use the HTTP specific functions
like http.getResponseBody() to read the response.

Sample Usage

Get the first 1K of data
Sdata = response.get(1024);

See also: response.getlength, response.getlLine, response.set, request.get

5.2.174 response.getBandwidthClass()

Returns the current bandwidth class for the connection to the client, or an empty string if
no class is set.

Sample Usage

Sclass = response.getBandwidthClass() ;

See also: response.setBandwidthClass, request.setBandwidthClass,
request.getBandwidthClass

5.2.175 response.getLength()

Returns the amount of data already received from the server. This can be combined with
response.get() to reliably read data from a connection without stalling if no data is
available.

Sample Usage

Sdata = response.get (response.getLength());

See also: response.get, request.getLength

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 212 OF 275

() ZeUs

5.2.176 response.getLine([regex], [offset])

Returns a line of response data provided by the server. The line is terminated by the
supplied regular expression, or by '"\n'. If 'offset' is provided, response.getLine() returns
the data from that offset to the terminating expression.

When response.getLine() returns, the variable $1 is updated to point to the start of the
next line in the datastream.

You can iterate through the lines of response data by using $1 as the iterator variable.

Sample Usage

Process the lines in the response until an empty
line is found

$line = response.getLine("\n");

while ($line != "\n") {

process S$line...

$line = response.getLine("\n", $1);
}
See also: response.get, request.getlLine
5.2.177 response.getLocallP()

Returns the local IP address of the connection to the node in use, i.e. an IP address on the
local machine that your traffic manager connected from. It returns the empty string if no
connection exists.

Sample Usage

Find the IP address we connected from, such as
"10.1.4.21" or "2001:200::8002:203:30:40:3085"

Sip = response.getLocallP();

See also: response.getlocalPort, response.getRemotelP,
response.getRemotePort, request.getlLocallP, request.getlLocalPort,
request.getRemotelP, request.getRemotePort

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 213 OF 275

() ZeUs

5.2.178 response.getlLocalPort()

Returns the local port of the connection to the node in use, i.e. the port number on the
local machine that the traffic manager connected from. It returns 0 if there is no current
connection to a node.

Sample Usage

Sport = response.getLocalPort();

See also: response.getlLocallP, response.getRemotePort,
response.getRemotelP, request.getlLocalPort, request.getlLocallP,
reqguest.getRemotePort, request.getRemotelP

5.2.179 response.getRemotelP()

Returns the remote IP address of the node used. If there is no current connection, it will
return an empty string.

Sample Usage

Get the IP address of the node used, such as
"10.1.4.21" or "2001:200::8002:203:a:1:3085"

Sip = response.getRemoteIP () ;

See also: response.getRemotePort, response.getlLocallP,
response.getlLocalPort, request.getRemotelP,
request.getRemotePort, request.getlocallP, request.getlLocalPort

5.2.180 response.getRemotePort()

Returns the network port number on which the traffic manager connected to a node. (e.g.
port 80 is normal for a web server). If there is no current connection, it will return 0.

Sample Usage

Sport = response.getRemotePort () ;

See also: response.getRemotelP, response.getLocalPort,
response.getlLocallP, request.getRemotePort,
request.getRemotelP, request.getlLocalPort, request.getlLocallP

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 214 OF 275

() ZeUs

5.2.181

response.getToS(Type of Service)

Returns the Type of Service (ToS) of traffic going to the client. The return value is either
"LOWDELAY", "THROUGHPUT", "RELIABILITY" or "NONE".

Sample Usage

if (response.getToS ()

connection.sleep(1000

== "LOWDELAY") {

)

See also:

request.getToS, response.setToS

5.2.182

response.set(response data)

Sets the server response to the provided string.

This is a low-level routine that should be used with care. For protocols with their own
higher-level protocol managers (e.g. HTTP), you must use the higher level routines to alter
the input data (e.g. http.setResponseHeader() and http.setResponseBody()).

Sample Usage

);

Sdata = response.get();

Sdata = string.regexsub($data,
"From: ", "To: ", "g"

response.set ($data);

See also:

reqguest.sendResponse, response.append, response.get,

reguest.set

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 215 OF 275

() ZeUs

5.2.183 response.setBandwidthClass(name)

Sets the bandwidth class for the current connection to the client. Providing an empty class
name removes the bandwidth class from the connection. It returns zero if an error occurs
(for example, if the bandwidth class does not exist), and 1 otherwise.

Sample Usage

response.setBandwidthClass ("gold customers");

See also: response.getBandwidthClass, request.getBandwidthClass,
request.setBandwidthClass

5.2.184 response.setToS(Type of Service)

Sets the Type of Service (ToS) flags of traffic going to the client. Valid options are
"LOWDELAY", "THROUGHPUT", "RELIABILITY" or "NONE". ToS flags may be used by
network equipment to change how they route network traffic.

Sample Usage

response.setToS ("LOWDELAY") ;

See also: request.setToS, response.getToS

5.2.185 rtsp.addRequestHeader(name, value)

Adds an RTSP header. If the header already exists, then this value will be appended to the
existing value. The header name is automatically translated to the correct case before it is
added.

Sample Usage

Add a transport header
Smy header = "RTP/AVP/TCP; interleaved=0-1";
rtsp.addRequestHeader ("Transport", Smy header);

See also: rtsp.setRequestHeader, rtsp.getRequestHeader,
rtsp.removeRequestHeader

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 216 OF 275

() ZeUs

5.2.186 rtsp.addResponseHeader(name, value)

Adds an RTSP header to the RTSP response that will be sent back to the client. If the
header already exists in the response, then this value will be appended to the existing
value. The header name is automatically translated to the correct case before it is added.

Sample Usage

Add a new transport header
Smy header = "RTP/AVP/TCP; interleaved=0-1";

rtsp.addResponseHeader ("Transport", Smy header);

See also: rtsp.setResponseHeader, rtsp.getResponseHeader,
rtsp.removeResponseHeader, rtsp.addRequestHeader

5.2.187 rtsp.getMethod()

Returns the RTSP method that was used to make the request, such as SETUP or PLAY.

Sample Usage

Direct DESCRIBE requests to separate pool
if(rtsp.getMethod() == "DESCRIBE") {

set pool to Describe pool

See also: rtsp.setMethod
5.2.188 rtsp.getPath()

Returns the %-decoded path in the RTSP request URL

Sample Usage

Retrieve the requested file

S$file = rtsp.getPath();

See also: rtsp.setPath, rtsp.getRawURL

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 217 OF 275

() ZeUs

5.2.189 rtsp.getRawURL()

Returns the raw URL data provided by the client in the first line of the RTSP request, after
the method and before the RTSP version specifier. No %-decoding is performed on the
URL.

Sample Usage

Srawurl = rtsp.getRawURL () ;
if (string.contains($rawurl, "../")) {
Something suspicious here ...

connection.discard() ;

See also: rtsp.getPath

5.2.190 rtsp.getRequest()

Returns the full RTSP request and headers, but does not include any body data.

Sample Usage

Get the complete rtsp request
Srequest = rtsp.getRequest () ;

See also: rtsp.listRequestHeaderNames, rtsp.getRequestHeader,
rtsp.getRequestBody

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 218 OF 275

() ZeUs

5.2.191 rtsp.getRequestBody([count])

Returns the body data of the request.

If the optional 'count' parameter is supplied, rtsp.getRequestBody() will only read and
return this number of bytes. If count is 0, rtsp.getRequestBody() returns the entire

request.

If the request has no body, then this returns an empty string. This function is not useable

in response rules, as the body data of the request will no longer be accessible.

Sample Usage

Read the entire request body
Sbody = rtsp.getRequestBody () ;

See also: rtsp.getResponseBody, rtsp.setRequestBody,
rtsp.getRequestBodylines

5.2.192 rtsp.getRequestBodyLines(count)

Splits the body data of the RTSP request into individual lines and returns an array of the

data.
If the request has no body, then this returns an empty array.

Sample Usage

Read the entire request body
Sbody = rtsp.getRequestBodyLines () ;
Process it line-by-line
foreach($line in S$body) {

...

See also: rtsp.getRequestBody, rtsp.getResponseBodylines,
rtsp.setRequestBody

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 219 OF 275

() ZeUs

5.2.193 rtsp.getRequestHeader(name)

Returns the value of a named RTSP header in the RTSP request, or the empty string if the
header does not exist. The header name is automatically translated into the proper case
for the lookup.

Sample Usage

Get the transport detail
Stransport = rtsp.getRequestHeader ("Transport");

See also: rtsp.setRequestHeader, rtsp.addRequestHeader,
rtsp.removeRequestHeader, rtsp.getRequestHeaders

5.2.194 rtsp.getRequestHeaderNames() - deprecated

This function has been deprecated. Use rtsp.listRequestHeaderNames instead.
Returns a list of all the headers that are present in the request.

The headers are returned as a single string, separated by spaces.

5.2.195 rtsp.getRequestHeaders()
Returns a hash containing all the header names in the request mapped to their values.

Sample Usage

Show all the headers in the request
Sheaders = rtsp.getRequestHeaders () ;

foreach ($header in hash.keys(Sheaders)) {
log.info(S$header . "=" . Sheaders[$header]);
}
See also: rtsp.getRequestHeader, rtsp.setRequestHeader,

rtsp.addRequestHeader, rtsp.removeRequestHeader,
rtsp.requestHeaderExists, rtsp.getResponseHeaders

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 220 OF 275

() ZeUs

5.2.196 rtsp.getResponse()

Returns the full RTSP response and headers, but does not include any body data.

Sample Usage

Get the complete rtsp response

Srequest = rtsp.getResponse () ;

See also: rtsp.listResponseHeaderNames, rtsp.getResponseHeader,
rtsp.getResponseBody

5.2.197 rtsp.getResponseBody([count])
Returns the body of the RTSP response. This could be an SDP response.

If the optional 'count' parameter is provided, rtsp.getResponseBody() will read and return
the first 'count' bytes of the response. If count is 0, rtsp.getResponseBody() will return the
entire response.

Sample Usage

Read the entire response body

Sbody = rtsp.getResponseBody () ;

See also: rtsp.getRequestBody, rtsp.setResponseBody,
rtsp.getResponseBodylines

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 221 OF 275

() ZeUs

5.2.198

rtsp.getResponseBodyLines(count)

Splits the body data of the RTSP request into individual lines and returns an array of the

data.

If the request has no body, then this returns an empty array.

Sample Usage

Read the entire request body
Sbody = rtsp.getResponseBodyLines () ;
Process it line-by-line
foreach($line in $body) {

...

See also: rtsp.getResponseBody, rtsp.getRequestBodyLines,

5.2.199

rtsp.setResponseBody

rtsp.getResponseCode()

Returns the status code from the first line of the RTSP response.

Sample Usage

Is the status '200'
if (rtsp.getResponseCode () == 200) {
...
}
See also: rtsp.setResponseCode

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 222 OF 275

() ZeUs

5.2.200 rtsp.getResponseHeader(name)

Returns the value of a RTSP header in the RTSP response, or the empty string if the
header does not exist. The header name is automatically translated into the proper case
for the lookup.

Sample Usage

Get the transport header

Stransport = rtsp.getResponseHeader ("Transport");

See also:

rtsp.setResponseHeader, rtsp.addResponseHeader,
rtsp.removeResponseHeader, rtsp.responseHeaderExists,
rtsp.getRequestHeader, rtsp.getResponseHeaders

5.2.201 rtsp.getResponseHeaderNames() - deprecated

This function has been deprecated. Use rtsp.listResponseHeaderNames instead.

Returns a list of all the headers that are present in the response.

The headers are returned as a single string, separated by spaces.

5.2.202 rtsp.getResponseHeaders()

Returns a hash containing all the header names in the response mapped to their values.

Sample Usage

Show all the headers in the response

Sheaders = rtsp.getResponseHeaders () ;

foreach($header in hash.keys(Sheaders)) {
log.info(S$header . "=" . Sheaders[$header]);
}
See also: rtsp.getResponseHeader, rtsp.setResponseHeader,

rtsp.addResponseHeader, rtsp.removeResponseHeader,
rtsp.responseHeaderExists, rtsp.getRequestHeaders

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 223 OF 275

() ZeUs

5.2.203 rtsp.getVersion()

Returns the version of the RTSP protocol being used. It returns the version string in the
RTSP/version specifier in the first line of the RTSP request, such as 'RTSP/1.0'".

Sample Usage

Get the RTSP version

Sversion = rtsp.getVersion();

5.2.204 rtsp.listRequestHeaderNames()
Returns a list of all the headers that are present in the request.
The headers are returned as a an array.

Sample Usage

Log all of the header names and values
Sheaders = rtsp.listRequestHeaderNames () ;
foreach ($header in S$headers) {
log.info ($Sheader . "="
rtsp.getRequestHeader (Sheader)) ;

See also: rtsp.listResponseHeaderNames, rtsp.getRequestHeader,
rtsp.getRequestHeaders

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 224 OF 275

() ZeUs

5.2.205 rtsp.listResponseHeaderNames()
Returns a list of all the headers that are present in the response.
The headers are returned as an array.

Sample Usage

Log all of the header names and values
Sheaders = rtsp.listResponseHeaderNames () ;
foreach($header in S$headers) {

log.info (Sheader . "="

rtsp.getRequestHeader (Sheader)) ;

See also: rtsp.getResponseHeader, rtsp.removeResponseHeader,
rtsp.getResponseHeaders, rtsp.listRequestHeaderNames

5.2.206 rtsp.redirect(path)

Sends back an RTSP 302 redirect response, which will send the client to a different URL.
This is equivalent to rtsp.sendResponse("302 Moved Temporarily", "", "Location: " . $url);

I

Sample Usage

Redirect requests for a particular file elsewhere

Spath = rtsp.getPath();

if(S$Spath == "specialfile") {
rtsp.redirect ("rtsp://otherserver/" . S$path);
}
See also: rtsp.sendResponse

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 225 OF 275

() ZeUs

5.2.207 rtsp.removeRequestHeader(name)

Removes an RTSP header if it exists in the request. The header name is automatically

translated to the correct case.

Sample Usage

Remove the transport header

rtsp.removeRequestHeader ("Transport");

See also: rtsp.setRequestHeader, rtsp.getRequestHeader,

rtsp.addRequestHeader

5.2.208 rtsp.removeResponseHeader(name)

Removes a RTSP header from the RTSP response. The header name is automatically

translated to the correct case.

Sample Usage

Remove the GET PARAMETER header

rtsp.removeResponseHeader ("GET PARAMETER");

See also: rtsp.setResponseHeader, rtsp.getResponseHeader,

rtsp.addResponseHeader, rtsp.removeRequestHeader

5.2.209 rtsp.requestHeaderExists(names)

Reports if a header exists or not. It is similar to rtsp.getRequestHeader(), but makes it
possible to distinguish between a header not being present and a header having no value.

The header name is automatically translated into the proper case for the lookup.

It returns 1 if the header exists, and O if it does not.

Sample Usage

Check for the Transport header
if(rtsp.requestHeaderExists("Transport"

Modify the transport options

)

)

{

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 226 OF 275

() ZeUs

5.2.210 rtsp.responseHeaderExists(name)

Reports if a named header exists in the RTSP response. It is similar to
rtsp.getResponseHeader(), but makes it possible to distinguish between a header not
being present and a header having no value.

The header name is automatically translated into the proper case for the lookup.

It returns 1 if the header exists, and 0 if it does not.

Sample Usage

Test for the 'Transport' response header
if (rtsp.responseHeaderExists("Transport")) {

modify the parameters

See also: rtsp.getResponseHeader

5.2.211 rtsp.sendResponse(code, body, headers)

Sends back an RTSP response to the client instead of balancing the request via a pool onto
a node. It generates a correct RTSP response from the response code, body data and
headers supplied. Multiple headers should be separated with \r\n.

Sample Usage

Discard SET PARAMETER requests if the server
does not support it
if (rtsp.getMethod() == "SET PARAMETER") {

rtsp.sendResponse ("401 Unauthorised", "", "");

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 227 OF 275

() ZeUs

5.2.212 rtsp.setMethod(method)

Sets the RTSP method to use when forwarding the request via a pool to a node.

Sample Usage

Force the client to send an OPTIONS packet
rtsp.setMethod ("OPTIONS");

See also: rtsp.getMethod
5.2.213 rtsp.setPath(url)

Replaces the Path portion of the request URL with the supplied value.

Sample Usage

Make customer view specific file:

rtsp.setPath("myvideo.rm");

See also: rtsp.getPath
5.2.214 rtsp.setRequestBody(body)

Sets the request body for this RTSP request, replacing any request body already present.

This also updates the 'Content-Length' header in the request to the length of the new body

data.

Sample Usage

Sbody = rtsp.getRequestBody(0);
Sbody = string.regexsub($body, "Buy", "Sell", "g"
rtsp.setRequestBody ($body) ;

See also: rtsp.getRequestBody, rtsp.setResponseBody

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 228 OF 275

() ZeUs

5.2.215

rtsp.setRequestHeader(name, value)
Sets the value of a RTSP header, replacing any existing value if the header already exists.

Note that this function should not be used with the Connection header, i.e.
setRequestHeader("Connection", value) since it may not give the expected results.

The header name is automatically translated to the correct case before it is added.

Sample Usage

Replace the transport header
Smy header = "RTP/AVP/TCP; interleaved=0-1";

rtsp.setRequestHeader ("Transport", $my header);

See also: rtsp.getRequestHeader, rtsp.addRequestHeader,
rtsp.removeRequestHeader
5.2.216 rtsp.setResponseBody(body)

Sets the response body for this RTSP response, replacing any response body already
present.

This also updates the 'Content-Length' header in the response to the length of the new
body data. If the server is still sending the original response body when this function is
called, the connection to the server will be harmlessly dropped.

Sample Usage

Sbody = rtsp.getResponseBody(0);
Sbody = string.regexsub($body, "Buy", "Sell", "g");
rtsp.setResponseBody (S$body) ;

See also: rtsp.getResponseBody, rtsp.setRequestBody

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 229 OF 275

() ZeUs

5.2.217 rtsp.setResponseCode(code, [message])

Sets the status code and message in the first line of the RTSP response.

Sample Usage

Stop clients receiving a particular file

Spath = rtsp.getPath();

if(Spath == "specialfile") {
rtsp.setResponseCode ("401", "Unauthorised");
}
See also: rtsp.getResponseCode
5.2.218 rtsp.setResponseHeader(name, value)

Sets a RTSP header in the RTSP response that will be sent back to the client. If the header
already exists in the response, then it will be replaced with this new value.

Note that this function should not be used with the Connection header, i.e.
setResponseHeader("Connection”, value) since it may not give the expected results.

The header name is automatically translated to the correct case before it is added.

Sample Usage

Replace the transport header
Smy header = "RTP/AVP/TCP; interleaved=0-1";

rtsp.setResponseHeader ("Transport", Smy header);

See also: rtsp.addResponseHeader, rtsp.getResponseHeader,
rtsp.removeResponseHeader, rtsp.setRequestHeader

5.2.219 rule.getName()

Returns the name of the currently executing rule.

Sample Usage

Srulename = rule.getname () ;

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 230 OF 275

() ZeUs

5.2.220 rule.getState()

Returns the state of the currently executing rule, either "REQUEST", "RESPONSE" or
"GLBRESPONSE".

Sample Usage

Srulestate = rule.getstate();

5.2.221 sip.addRequestHeader(name, value, at_top)

Modifies the current SIP request, adding a SIP header with the supplied value. If the
header already exists, then this value will be appended to the existing value. If at_top is
set then the value will be prepended to the header. The header name is automatically
translated to the correct case before it is added.
You can specify the long or short form of the header name, so 'Via' and 'v' will both match
the Via header field.

Sample Usage

Add a priority header if it is missing
if(!sip.requestHeaderExists("Priority")) {
sip.addRequestHeader ("Priority", "normal", 0);
}
See also: sip.setRequestHeader, sip.getRequestHeader,

sip.removeRequestHeader, sip.requestHeaderExists

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 231 OF 275

() ZeUs

5.2.222 sip.addResponseHeader(name, value, at_top)

Adds a header to the SIP response that will be sent back to the client. If the header
already exists in the response, then this value will be appended to the existing value. If
at_top is set then the value will be prepended to the existing value. The header name is
automatically translated to the correct case before it is added.
You can specify the long or short form of the header name, so 'Via' and 'v' will both match
the Via header field.

Sample Usage

Use an internal webpage to see if the callee is
logged into their system
Sloggedin = http.request.get (
"http://internal.example.com/".
"lookupuser=bob") ;
if($loggedin = "No") {
Set a warning if they are not
sip.addResponseHeader ("Warning",
"399 zeus.com User is not logged in. ".

" Your call might not be answered.", 0);

See also: sip.setResponseHeader, sip.getResponseHeader,
sip.removeResponseHeader, sip.addRequestHeader

5.2.223 sip.getMethod()

Returns the SIP method that was used to make the request, such as INVITE or REGISTER.

Sample Usage

Direct REGISTER requests to Registrar
if(sip.getMethod () == "REGISTER") {
set pool to Registrar pool

See also: sip.setMethod

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 232 OF 275

() ZeUs

5.2.224 sip.getRequest()

Returns the full SIP request and headers, but does not include any body data.

Sample Usage

Get the full SIP headers
Srequest = sip.getRequest();

See also: sip.listRequestHeaderNames, sip.getRequestHeader

5.2.225 sip.getRequestBody()
Returns the data contained in the body of the request.

Sample Usage

unsupported content

if(sip.getMethod () == "INVITE") {
Sbody = sip.getRequestBody () ;
inspect packet body

Get the inbound Session Description to check for

See also: sip.setRequestBody, sip.getResponseBody,

sip.getRequestBodylLines

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 233 OF 275

() ZeUs

5.2.226 sip.getRequestBodyLines()

Splits the body data of the SIP request into individual lines and returns an array of the

data.

If the request has no body, then this returns an empty array.

Sample Usage

Read the request body

Sbody = sip.getRequestBodyLines () ;

See if it's an SDP

if (string.startswith($body[0], "v=0")) {
Process SDP data

See also: sip.getRequestBody, sip.getResponseBodylines,
sip.setRequestBody

5.2.227 sip.getRequestHeader(name)

Returns the named SIP header in the SIP request, or the empty string if the header does
not exist. The header name is automatically translated into the proper case for the lookup.
You can specify the long or short form of the header name, so 'Via' and 'v' will both match

the Via header field.

Sample Usage

Get information about the UAC

originating this request

Suac = sip.getRequestHeader ("User-Agent");
this returns the same value

Suac = sip.getRequestHeader ("user-agent");

See also: sip.setRequestHeader, sip.addRequestHeader,
sip.removeRequestHeader, sip.requestHeaderExists,
sip.getRequestHeaders

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 234 OF 275

() ZeUs

————
e
o —

L —

5.2.228

sip.getRequestHeaderNames() - deprecated

This function has been deprecated. Use sip.listRequestHeaderNames instead.

Returns a list of all the headers that are present in the request.

The headers are returned as a single string, separated by spaces.

5.2.229

sip.getRequestHeaders()

Returns a hash containing all the header names in the request mapped to their values.

Sample Usage

Show all the headers in the request

Sheaders = sip.getRequestHeaders () ;

foreach($Sheader in hash.keys($headers)) {
log.info(Sheader . "=" . Sheaders[$header]);

See also: sip.getRequestHeader, sip.setRequestHeader,

sip.addRequestHeader, sip.removeRequestHeader,
sip.requestHeaderExists, sip.getResponseHeaders

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 235 OF 275

() ZeUs

5.2.230 sip.getRequestURI()

Returns the target of the SIP request.

Sample Usage

Check a status file to see if this user

wants to accept calls.

if(sip.getRequestURI () == "sip:boblexample.com") {
see if this user is available

Sstatus = http.request.get (
"http://www.example.com/status.cgi?user=bob") ;

if ($status != "available") {

sip.sendResponse ("486",
"User is currently " . S$status);

See also: sip.setRequestURI

5.2.231 sip.getResponse()

Returns the full SIP response and headers, but does not include any body data.

Sample Usage

Get the full SIP headers

Srequest = sip.getResponse () ;

sip.listResponseHeaderNames, sip.getResponseHeader

See also:

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 236 OF 275

() ZeUs

5.2.232 sip.getResponseBody()
Returns the session description of the SIP response.

Sample Usage

Read the entire response body

$Ssdp = sip.getResponseBody () ;

See also: sip.setResponseBody, sip.getRequestBody,
sip.getResponseBodyLlines

5.2.233 sip.getResponseBodyLines()

Splits the body data of the SIP response into individual lines and returns an array of the
data.

If the response has no body, then this returns an empty array.

Sample Usage

Get the response body
Ssdp = sip.getResponseBodyLines () ;
Process it line-by-line
foreach($line in $sdp) {
#

See also: sip.getResponseBody, sip.setResponseBody,
sip.getRequestBodylines

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 237 OF 275

() ZeUs

5.2.234 sip.getResponseCode()

Returns the status code from the first line of the SIP response.

Sample Usage

Is the status '200'
if(sip.getResponseCode () == 200) {
...
}
See also: sip.setResponseCode
5.2.235 sip.getResponseHeader(name)

Returns the value of a header in the SIP response, or the empty string if the header does
not exist. The header name is automatically translated into the proper case for the lookup.
You can specify the long or short form of the header name, so 'Via' and 'v' will both match
the Via header field.

Sample Usage

Get the route all future requests will take

Srr = sip.getResponseHeader ("Record-Route");

See also: sip.setResponseHeader, sip.addResponseHeader,
sip.removeResponseHeader, sip.responseHeaderExists,
sip.getRequestHeader, sip.getResponseHeaders

5.2.236 sip.getResponseHeaderNames() - deprecated

This function has been deprecated. Use sip.listResponseHeaderNames instead.
Returns a list of all the headers that are present in the response.

The headers are returned as a single string, separated by spaces.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 238 OF 275

() ZeUs

5.2.237 sip.getResponseHeaders()

Returns a hash containing all the header names in the response mapped to their values.

Sample Usage

Show all the headers in the response

Sheaders = sip.getResponseHeaders () ;

foreach($header in hash.keys(S$headers)) {
log.info(Sheader . "=" . Sheaders[$header]);

See also: sip.getResponseHeader, sip.setResponseHeader,
sip.addResponseHeader, sip.removeResponseHeader,
sip.responseHeaderExists, sip.getRequestHeaders

5.2.238 sip.getVersion()

Returns the version of the SIP protocol being used. It returns the version string in the
SIP/version specifier in the first line of the SIP request, such as 'SIP/2.0'".

Sample Usage

Get the SIP version

Sversion = sip.getVersion() ;

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 239 OF 275

() ZeUs

5.2.239 sip.listRequestHeaderNames()
Returns a list of all the headers that are present in the request.
The headers are returned as an array.

Sample Usage

Log all of the header names and values
Sheaders = sip.listRequestHeaderNames () ;
foreach($header in $headers) {
log.info (Sheader . "="
sip.getRequestHeader (Sheader)) ;

See also: sip.getRequestHeader, sip.removeRequestHeader, sip.getRequest,
sip.listResponseHeaderNames, sip.getRequestHeaders

5.2.240 sip.listResponseHeaderNames()
Returns a list of all the headers that are present in the response.
The headers are returned as an array.

Sample Usage

Log all of the header names and values
Sheaders = sip.listResponseHeaderNames () ;
foreach($header in S$headers) {

log.info ($Sheader . "="

sip.getResponseHeader (Sheader)) ;

See also: sip.getResponseHeader, sip.removeResponseHeader,
sip.listRequestHeaderNames, sip.getResponseHeaders

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 240 OF 275

() ZeUs

5.2.24| sip.redirect(contact)

Sends back a 302 Moved Temporarily response. This response instructs the client to retry
the request at the new address(es) given in the 'contact' parameter. This is equivalent to
sip.sendResponse("302", "Moved Temporarily", "Contact: " . $uri, "");

Sample Usage

Example's offices are closed, redirect all their
calls to voicemail.

Suser = sip.getRequestURI () ;

if(string.EndsWith(Suser, "@example.com")) {
Susername = string.left(Suser,
string.find(Suser, "@"));
Scontact = Susername . "@voicemail.example.com";

sip.redirect ($contact);

See also: sip.sendResponse

5.2.242 sip.removeRequestHeader(name)

Removes a header if it exists in the request. The header name is automatically translated
to the correct case.
You can specify the long or short form of the header name, so 'Via' and 'v' will both match
the Via header field.

Sample Usage

Filter out any custom alert tones that have
been specified by the client

sip.removeRequestHeader ("Alert-Info");

See also: sip.getRequestHeader, sip.addRequestHeader,
sip.setRequestHeader

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 241 OF 275

() ZeUs

5.2.243 sip.removeResponseHeader(name)

Removes a header from the SIP response. The header name is automatically translated to
the correct case.
You can specify the long or short form of the header name, so 'Via' and 'v' will both match
the Via header field.

Sample Usage

Remove the server header, if it exists, to avoid
application-specific exploits being used

sip.removeResponseHeader ("Server");

See also: sip.setResponseHeader, sip.getResponseHeader,
sip.addResponseHeader, sip.removeRequestHeader

5.2.244 sip.requestHeaderExists(name)

Reports if a named header exists or not. It is similar to sip.getRequestHeader(), but makes
it possible to distinguish between a header not being present and a header having no
value.

The header name is automatically translated into the proper case for the lookup.
You can specify the long or short form of the header name, so 'Via' and 'v' will both match
the Via header field.

It returns 1 if the header exists, and O if it does not.

Sample Usage

Add a Priority header if it is missing
if(!sip.requestHeaderExists("Priority")) {

sip.addRequestHeader ("Priority", "normal", 0);

See also: sip.getRequestHeader

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 242 OF 275

() ZeUs

5.2.245 sip.responseHeaderExists(name)

Reports if a named header exists in the SIP response. It is similar to
sip.getResponseHeader(), but makes it possible to distinguish between a header not being
present and a header having no value.

The header name is automatically translated into the proper case for the lookup.
You can specify the long or short form of the header name, so 'Via' and 'v' will both match
the Via header field.

It returns 1 if the header exists, and 0 if it does not.

Sample Usage

Test for the 'Warning' response header
if(sip.responseHeaderExists("Warning")) {

oo

See also: sip.getResponseHeader

5.2.246 sip.sendResponse(code, reason, [headers], [body])

Sends back a SIP response to the client instead of balancing the request via a pool onto a
node. The Statue-Line of the response has the form: SIP/2.0 code reason Via, Record-
Route, From, To, CSeq, Call-ID and Content-Length headers are automatically added to
the response. Any headers supplied in the headers parameter will also be added to the
response. Multiple headers must be separated by \r\n. Any body data specified is
appended to the response.

Sample Usage

Send Forbidden response if the user is blacklisted
Scontact = sip.getRequestHeader ("Contact");
if(string.contains($contact, "10.234.12.42")) {

sip.sendResponse ("403", "Forbidden");

See also: sip.redirect

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 243 OF 275

() ZeUs

5.2.247

sip.setMethod(method)

Sets the SIP method to use when forwarding the request via a pool to a node.

Sample Usage

Force non-standard PING requests to become OPTIONS
if(sip.getMethod () == "PING") {
sip.setMethod ("OPTIONS");

sip.setRequestHeader ("Max-Forwards", "1");

See also: sip.getMethod
5.2.248 sip.setRequestBody(body)

Sets the request body for this SIP request to the supplied string, replacing any request
body already present.

This also updates the 'Content-Length' header in the request to the length of the new body

data.

Sample Usage

Sbody = sip.getRequestBody () ;
Forward all data from the server through an

intermediate machine

Sbody = string.regexsub ($body, request.getRemoteIP (),

"192.168.9.100", "g");
sip.setRequestBody ($body);

See also: sip.getRequestBody

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 244 OF 275

() ZeUs

5.2.249 sip.setRequestHeader(name, value)

Sets a SIP header, replacing any existing value if the header already exists.
You can specify the long or short form of the header name, so 'Via' and 'v' will both match

the Via header field.

Sample Usage

Add a reference to an information page about
a known company when a call is received from
them, and an icon to help identify them.
if (sip.getRequestHeader ("Organization")
== "Zeus") {
sip.setRequestHeader ("Call-Info",
"<http://www.zeus.com/assets/img/logo.gif>".
" ;purpose=icon,".
"<http://www.zeus.com/about/>".

nw

;purpose=info");

See also: sip.addRequestHeader, sip.getRequestHeader,

sip.requestHeaderExists, sip.removeRequestHeader

5.2.250 sip.setRequestURI(uri)

Sets the target of the SIP request.

Sample Usage

If the user has recently changed username, rewrite
requests that address their old username.
if(sip.getRequestURI () == "sip:jond@example.com")

sip.setRequestURI ("sip:jdoe@example.com");

{

See also: sip.getRequestURI

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 245 OF 275

() ZeUs

5.2.251

sip.setResponseBody(body)

Sets the response body for this SIP response, replacing any response body already
present.

This also updates the 'Content-Length' header in the response to the length of the new
body data. If the server is still sending the original response body when this function is
called, the connection to the server will be harmlessly dropped.

Sample Usage

Sbody = sip.getResponseBody () ;
Forward all data from the client through an
intermediate machine
Sbody = string.regexsub ($body,
= %W,
"c=IN IP4 "
."192.168.9.100",
"g");
sip.setResponseBody ($body);

See also: sip.getResponseBody, sip.setRequestBody

5.2.252

Sets the status code and message in the first line of the SIP response.

sip.setResponseCode(code, [message])

Sample Usage

Redirect client to a backup server if the proxy
has an internal error.
if (sip.getResponseCode () == "500") {
sip.setResponseHeader ("Contact",
"sip:backup.example.com") ;

sip.setResponseCode ("305", "Use Proxy");

See also: sip.getResponseCode

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 246 OF 275

() ZeUs

5.2.253 sip.setResponseHeader(name, value)

Sets a header in the SIP response that will be sent back to the client. If the header already
exists in the response, then it will be replaced with this new value.

The header name is automatically translated to the correct case before it is added.
You can specify the long or short form of the header name, so 'Via' and 'v' will both match
the Via header field.

Sample Usage

Change the server string
sip.setResponseHeader ("Server",

"Zeus 5.0 (Linux/i386)");

See also: sip.addResponseHeader, sip.getResponseHeader,
sip.removeResponseHeader, sip.setRequestHeader

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 247 OF 275

() ZeUs

5.2.254

sim.conforming([class name])

Returns the current percentage of requests that are meeting the Service Level Monitoring
objectives. If no class name is provided, it will use the SLM class currently associated with
this connection; if no SLM class is associated with this connection, it returns 100.

Sample Usage

If the Gold customers are starting to get slow,

gradually reroute other services...

Sconforming = slm.conforming("gold requests");
if(($Slevel == "bronze" && $conforming < 70) ||
($level == "silver" && Sconforming < 50)) {

tell lower value customers to come back later to
reduce load on back-end node to ensure premium
customers get good response
http.sendResponse ("302", "text/html", "",
"Location: /toobusy.html");
}
if(Sconforming < 80 && S$level != "gold") {
slow down rate of responding to non-premium
customers

connection.sleep(500);

See also: slm.threshold, sIm.isOK

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 248 OF 275

() ZeUs

5.2.255 sim.isOK([class_name])

Returns whether a particular Service Level Monitoring class is meeting its objectives. If no
class name is provided, it will use the SLM class currently associated with this connection;
if no SLM class is associated with the connection, it returns 1. This function is a
convenience shorthand for 'sim.conforming() > sIm.threshold()'.

Sample Usage

If the search nodes are under-utilised, use this
spare capacity to process web page requests too
if(slm.isOK("search-nodes")) {

pool.use("searchtweb nodes"):;
} else {

pool.use("web nodes");

See also: slm.conforming, slm.threshold

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 249 OF 275

() ZeUs

5.2.256 sim.threshold([class_name])

returns the value of the serious_threshold setting in the given SLM class. If no class name
is provided, it will use the SLM class currently associated with this connection; if no SLM

class is associated with the connection, it returns 0.

Sample Usage

If we are within 10% of our threshold, divert a
portion of traffic elsewhere. If we are less than
25% below of our threshold, take evasive action to
get our site's end user experience under control!
if(slm.conforming() < slm.threshold()*0.75) {
evasive action!
log.warn (
"Site performance requires evasive action");
if($Slevel == "bronze") {
send away low priority traffic
http.sendResponse ("302", "text/html"™, "",
"Location: /toobusy.html");
} else if($level == "silver") {
slow down processing of medium traffic
connection.sleep(500);
} else if($level == "gold") {
use reserved bandwidth QoS
response.setBandwidthClass (
"premium reserved bandwidth");
}
} else if(slm.conforming() < slm.threshold()*1.1) {
getting slow to the danger level; start
proactive traffic management
if(Scustomer != "gold") {

pool.use("non-priority-nodes");

See also: slm.conforming, slm.isOK

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 250 OF 275

() ZeUs

5.2.257 ssl.clientCert()

Returns the PEM encoded client certificate, or the empty string if the connection was not
SSL-encrypted or if a certificate was not supplied.

Sample Usage

Display the client certificate data

Scert = ssl.clientCert();
log.info("Certificate: " . S$Scert);
See also: ssl.isSSL
5.2.258 ssl.clientCertAlgorithm()

If the connection is SSL-encrypted and the client has supplied a valid certificate, then this
returns either 'rsaEncryption', 'md2withRSAEncryption', 'md5withRSAEncryption’,
'shalwithRSAEncryption' or 'RSA', depending on the certificate's encryption and hash
algorithms. Otherwise, it returns the empty string.

Sample Usage

Display the client certificate algorithm
Salg = ssl.clientCertAlgorithm() ;

log.info("Certificate alg: ".S$alg);
See also: ssl.isSSL
5.2.259 ssl.clientCertChain()

Returns the PEM encoded client certificate chain, or the empty string if the connection was
not SSL-encrypted or if a certificate was not supplied.

Sample Usage

Display the client certificate data
Scert = ssl.clientCertChain();

log.info("Certificate Chain: " . S$cert);

See also: ssl.isSSL, ssl.clientCert

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 251 OF 275

() ZeUs

5.2.260 ssl.clientCertEndDate()

If the connection is SSL-encrypted and the client has supplied a valid certificate, then this
returns the date when the certificate is no longer valid. The date is an integer,

representing seconds since the epoch.
Otherwise, this function returns 0.

Sample Usage

Display the client certificate end date
Send = ssl.clientCertEndDate () ;
log.info("Certificate is valid until ".

sys.timeToString($end));

See also: ssl.isSSL, ssl.clientCertStartDate, sys.timeToString

5.2.261 ssl.clientCertHash()

Returns a hex-encoded MD5 hash of the client certificate, or the empty string if the

connection was not SSL-encrypted or if a certificate was not supplied.

Sample Usage

Display the client certificate hash
Shash = ssl.clientCertHash() ;
log.info("Certificate hash: ".S$Shash);

See also: ssl.isSSL

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 252 OF 275

() ZeUs

5.2.262 ssl.clientCertlssuer()

Returns a string representing the issuer of the client certificate, or the empty string if the
connection was not SSL-encrypted or if a certificate was not supplied.

Sample Usage

Display the client certificate issuer

Sissuer = ssl.clientCertIssuer();
log.info("Certificate issuer: ".S$Sissuer);
See also: ssl.isSSL
5.2.263 ssl.clientCertPublicKey()

Returns a string representation of the public key of the client certificate, or the empty
string if the connection was not SSL-encrypted or if a certificate was not supplied.

Sample Usage

Display the client certificate key
Skey = ssl.clientCertPublicKey () ;

log.info("Certificate key: ".Skey);
See also: ssl.isSSL
5.2.264 ssl.clientCertSerial()

Returns the serial (in hex) of the client certificate, or the empty string if the connection
was not SSL-encrypted or if a certificate was not supplied.

Sample Usage

Display the client certificate serial

Sserial = ssl.clientCertSerial () ;

log.info("Certificate serial: ".$serial);

See also: ssl.clientCertSerialDec

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 253 OF 275

() ZeUs

5.2.265 ssl.clientCertSerialDec()

Returns the serial (in decimal) of the client certificate, or the empty string if the connection
was not SSL-encrypted or if a certificate was not supplied.

Sample Usage

Display the client certificate serial in decimal

$serial = ssl.clientCertSerialDec();
log.info("Certificate serial: ".S$Sserial);
See also: ssl.clientCertSerial
5.2.266 ssl.clientCertStartDate()

If the connection is SSL-encrypted and the client has supplied a valid certificate, then this
returns the date when the certificate became valid. The date is an integer, representing
seconds since the epoch.

Otherwise, this function returns 0.

Sample Usage

Display the client certificate start date
Sstart = ssl.clientCertStartDate () ;

log.info("Certificate is valid from

sys.timeToString ($start));

See also: ssl.isSSL, ssl.clientCertEndDate, sys.timeToString

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 254 OF 275

() ZeUs

5.2.267 ssl.clientCertStatus()

Returns 'OK' if the client certificate is valid, or 'NoClientCert' if it was missing or not valid.

It returns the empty string if the connection was not SSL-encrypted.

Sample Usage

if(ssl.clientCertStatus() != "OK") {

Handle missing client certificate ...

See also: ssl.isSSL

5.2.268 ssl.clientCertSubject()

Returns a string representing the subject of the client certificate, or the empty string if the

connection was not SSL-encrypted or if a certificate was not supplied.

Sample Usage

Display the client certificate subject
Ssubject = ssl.clientCertSubject () ;

log.info("Certificate subject: ".S$subject);
See also: ssl.isSSL
5.2.269 ssl.clientCertVersion()

Returns "1", "2" or "3" denoting the version of the client certificate, or the empty string if

the connection was not SSL-encrypted or if a certificate was not supplied.

Sample Usage

Display the client certificate version

Sversion = ssl.clientCertVersion () ;
log.info("Certificate version: ".S$version);
See also: ssl.isSSL

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 255 OF 275

() ZeUs

5.2.270 ssl.clientCipher()

Returns the cipher used by the client to SSL-encrypt the connection. It returns an empty
string if the connection was not SSL-encrypted.

The string returned contains the cipher algorithm, SSL version and effective cipher
strength, such as:

SSL_RSA_WITH_RC4_128_SHA, version=SSLv3, bits=128

Sample Usage

Get the encryption cipher
Scipher = ssl.clientCipher () ;
log.info("Encrypted with ".S$cipher);

See also: ssl.isSSL

5.2.271 ssl.clientSupportsSecureRenegotiation()
Returns true if the client is RFC 5746 compliant, else false.

Sample Usage

if(ssl.isSSL()) {
gather statistics about client-side support
for RFC 5746
if(ssl.clientSupportsSecureRenegotiation()) {
counter.increment (1);
} else {

counter.increment (2);

See also: ssl.requireCert, ssl.isSSL

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 256 OF 275

() ZeUs

5.2.272 ssl.getClientCloseAlert()

Check whether your traffic manager will send the SSL client an SSL close alert prior to
terminating the TCP connection. The function will return a value of 1 if close alerts are
enabled, and 0 if they are disabled. The function will return -1 if the client-side connection
is not established, or is not an SSL connection.

Sample Usage

if(ssl.isSSL()) {
Salert = ssl.getClientCloseAlert () ;
log.info("client close alert: " . Salert);
}
See also: ssl.isSSL, ssl.setClientCloseAlert, ssl.setServerCloseAlert,

ssl.getServerCloseAlert

5.2.273 ssl.getServerCloseAlert()

Check whether your traffic manager will send the SSL server an SSL close alert prior to
terminating the TCP connection. The function will return a value of 1 if close alerts are
enabled, and 0 if they are disabled. The function will return -1 if the connection is not an
SSL connection, or if the server-side connection is not yet established (i.e. it should
typically only be used in response rules.)

Sample Usage

if(ssl.isSSL()) {
Salert = ssl.getServerCloseAlert () ;

log.info("server close alert: " . Salert);

See also: ssl.isSSL, ssl.setServerCloseAlert, ssl.setClientCloseAlert,
ssl.getClientCloseAlert

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 257 OF 275

() ZeUs

5.2.274 ssl.getTLSServerName()

Returns the hostname provided by the client using the TLS 1.0 'server_name' extension. If
this connection is not using SSL decryption or the client did use the extension then this
function returns the empty string.

Sample Usage

Sname = ssl.getTLSServerName () ;
log.info("The client provided "

"the server name: " . Sname);

See also: ssl.isSSL, ssl.setTLSServerName

5.2.275 ssLisSSL()

Returns 1 if this connection from the remote client was SSL encrypted and your traffic
manager has decrypted the traffic. Otherwise, it returns 0.

Sample Usage

if(ssl.isSSL()) {

This is an SSL-encrypted connection ...

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 258 OF 275

() ZeUs

5.2.276 ssl.requireCert()

Initiates an SSL renegotiation with the client, requiring a certificate. If the client fails to
provide a valid cert, the connection is closed with an SSL alert of type handshake_failure.
Otherwise, rule processing continues after the re-handshake is complete. If the client had
already provided a certificate, this function does nothing and rule processing continues. If
the underlying connection is not SSL, the transaction is aborted (i.e., this is interpreted as
a failed re-handshake). Note that using this function overrides the setting
ssl!ssI3_allow_rehandshake. It is strongly recommended to check for client-side support of
RFC 5746 before using it, see ssl.clientSupportsSecureRenegotiation.

Sample Usage

Spath = http.getPath();
if(string.startsWith($path, "/wikileaks")) {
Only let certain people see this data ...
if(ssl.clientSupportsSecureRenegotiation()) {
ssl.requireCert () ;
} else {

http.sendResponse (200, "text/plain",

"Please upgrade your browser", "");
}
}
See also: ssl.clientSupportsSecureRenegotiation
5.2.277 ssl.serverCert()

Returns a PEM encoded version of the entire certificate being used by your traffic manager
for this connection. If this virtual server is not using SSL decryption then this function will
return the empty string.

Sample Usage

Scert = ssl.serverCert();
log.info("Server certificate: " . S$Scert);
See also: ssl.isSSL

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 259 OF 275

() ZeUs

5.2.278 ssl.serverCertAlgorithm()

Returns a description of the algorithms being used by the virtual server's current
certificate. This will either be "rsaEncryption", "md2withRSAEncryption",
"md5withRSAEncryption", "shalwithRSAEncryption" or "RSA". If this virtual server is not
using SSL decryption (or the algorithm type is not recognised) then this function will return
the empty string.

Sample Usage

Salg = ssl.serverCertAlgorithm() ;

log.info("Server cert algorithm: " . Salg);
See also: ssl.isSSL
5.2.279 ssl.serverCertCommonName()

Returns the common name of the certificate being used by your traffic manager for this
connection. If this virtual server is not using SSL decryption then this function will return

the empty string.

Sample Usage

Scommon name = ssl.serverCertCommonName () ;
if (http.getHostHeader () != $common_name) {
log.warn("Client browser may report certificate".

" as invalid.");

See also: ssl.isSSL

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 260 OF 275

() ZeUs

5.2.280 ssl.serverCertEndDate()

Returns the date that the certificate being used by your traffic manager for this connection
became valid. The date is an integer, representing the number of seconds since the epoch.
If this virtual server is not using SSL decryption then this function will return the empty
string.

Sample Usage

Send = ssl.serverCertEndDate () ;

if($time < sys.time()) {

log.warn("Using out of date certificate!");
}
See also: ssl.isSSL, ssl.serverCertStartDate, sys.time, sys.timeToString
5.2.281 ssl.serverCertHash()

Returns the hex-encoded MD5 hash of the certificate being used by your traffic manager
for this connection. If this virtual server is not using SSL decryption then this function will
return the empty string.

Sample Usage

Smd5 = ssl.serverCertHash() ;

log.info("Server Cert Hash: " . $md5);

See also: ssl.isSSL

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 261 OF 275

() ZeUs

5.2.282 ssl.serverCertlssuer()

Returns a string with the issuer data of the certificate being used by your traffic manager
for this connection (each field is separated by commas). If this virtual server is not using
SSL decryption then this function will return the empty string.

Sample Usage

Sissuer = ssl.serverCertIssuer();
if(ssl.serverCertSubject () == S$issuer) {
log.info("Certificate is self-signed");
}
See also: ssl.isSSL, ssl.serverCertSubject
5.2.283 ssl.serverCertName()

Returns the name of the certificate being used by the virtual server for this connection.
This is the name used to identify the certificate in the UI. If this virtual server is not using
SSL decryption then this function will return the empty string.

Sample Usage

Sname = ssl.serverCertName () ;
log.info("Using server cert: " . S$name);
See also: ssl.isSSL

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 262 OF 275

() ZeUs

5.2.284 ssl.serverCertPublicKey()

Returns information about the public key of the certificate being used by your traffic
manager for this connection. If this virtual server is not using SSL decryption then this
function will return the empty string.

Sample Usage

Returns public key information,
e.g. "RSA (1024 bit)"
Spublic key = ssl.serverCertPublicKey () ;

log.info("Certificate public key: " . Spublic key);
See also: ssl.isSSL
5.2.285 ssl.serverCertSerial()

Returns a string with the serial humber (in hex) of the certificate being used by your traffic
manager for this connection. If this virtual server is not using SSL decryption then this
function will return the empty string.

Sample Usage

Sserial = ssl.serverCertSerial () ;
log.info("Server certificate serial: " . S$serial);
See also: ssl.isSSL

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 263 OF 275

() ZeUs

5.2.286 ssl.serverCertStartDate()

Returns the date the certificate being used by your traffic manager for this connection
became valid. The date is an integer, representing the number of seconds since the epoch.
If this virtual server is not using SSL decryption then this function will return the empty
string.

Sample Usage

Sstart = ssl.serverCertStartDate () ;
log.info("Server Certificate is valid from ".
sys.timeToString($start));
See also: ssl.isSSL, ssl.serverCertEndDate, sys.time, sys.timeToString

5.2.287 ssl.serverCertSubject()

Returns the subject data of the certificate being used by your traffic manager for this
connection (each field is separated by commas). If this virtual server is not using SSL
decryption then this function will return the empty string.

Sample Usage

Returns the subject information of the cert,
e.g. C=GB, L=Cambridge, O=Zeus, OU=Dev, CN=foo.com
Ssubject = ssl.serverCertSubject () ;

log.info("Server cert subject: " . S$subject);

See also: ssl.isSSL, ssl.serverCertlssuer

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 264 OF 275

() ZeUs

5.2.288 ssl.serverCertVersion()

Returns the version of the certificate being used by your traffic manager for this
connection (either "1", "2" or "3"). If this virtual server is not using SSL decryption then
this function will return the empty string.

Sample Usage

Sversion = ssl.serverCertVersion();
log.info("Server Cert Version: " . S$version);
See also: ssl.isSSL
5.2.289 ssl.serverSiteName()

Returns the hostname or IP address that was used to select the current server certificate.
If the default certificate was used, or the current connection is not encrypted, the empty
string is returned.

Sample Usage

Ssite name = ssl.serverSiteName () ;
if (ssl.isSSL() && $site name == "") {

The default certificate was used

See also: ssl.isSSL

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 265 OF 275

() ZeUs

5.2.290 ssl.setClientCloseAlert(alertflag)

Sets whether your traffic manager will send the SSL client an SSL close alert prior to
terminating the TCP connection. An value of 0 will disable close alerts, a non-zero value
will enable close alerts. This setting also applies to related connections, such as data
transfer channels related to FTP command channels. If the connection with the client is not
an SSL connection then calling this function will do nothing.

Sample Usage

if(ssl.isSSL()) {
Ensure close alerts are enabled.

ssl.setClientCloseAlert(1);

See also: ssl.isSSL, ssl.getClientCloseAlert, ssl.setServerCloseAlert,
ssl.getServerCloseAlert
5.2.291 ssl.setServerCloseAlert(alertflag)

Sets whether your traffic manager will send the SSL server an SSL close alert prior to
terminating the TCP connection. A value of 0 will disable close alerts, a non-zero value will
enable close alerts. This setting also applies to related connections, such as data transfer
channels related to FTP command channels. Note that this function will only work on SSL
connections and the server side connection must be established (i.e. it should typically
only be used in response rules.)

Sample Usage

if(ssl.isSSL()) {
Ensure close alerts are enabled.

ssl.setServerCloseAlert(1);

ssl.isSSL, ssl.getServerCloseAlert, ssl.setClientCloseAlert,
ssl.getClientCloseAlert

See also:

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 266 OF 275

() ZeUs

5.2.292 ssl.setTLSServerName(servername)

Instructs your traffic manager to use the specified hosthame when using the TLS 1.0
server_name extension. This method only works if the back end pool has SSL encryption
and the server_name option enabled. Using the empty string as this function's parameter
will make your traffic manager use the hostname of the node that it is connecting to.

Sample Usage

Use the hostname foo in the TLS 1.0 server name
extension

"foo") ;

ssl.setTLSServerName (

See also: ssl.isSSL, ssl.getTLSServerName

5.2.293 ssl.ssISessionlD()

Returns the session-id of the current SSL connection, or the empty string if the connection

was not SSL-encrypted.

Sample Usage

Get the SSL session ID
Ssessionid = ssl.sslSessionID() ;
log.info(
"SessionID: ".string.hexencode($sessionid));
See also: ssl.isSSL

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 267 OF 275

() ZeUs

5.2.294 tcp.close(sock)

Close a previously opened TCP socket. A non-zero return value indicates a successful
close, if 0 is returned then an error occured and an error string will be in '$1".

If a rule fails to close a TCP socket, it will be closed automatically when the Virtual Server
connection finishes.

Sample Usage

Ssock = tcp.connect("10.100.1.5", 7);

tcp.close($sock);

See also: tcp.connect, tcp.write, tcp.read

5.2.295 tcp.connect(ip, port, [timeout])

Create a new TCP socket to the supplied IP address and port. This function will return a
socket handle that can be used by other tcp.* functions. The created TCP socket is unique
to this connection, and can't be used by other connections.

An optional timeout can be specified in milliseconds. If a connection has not been
established within this time the function will return 0 and $1 will be set to "timeout".

Note that if the Virtual Server connection times out before this socket has been established
then the connection will be terminated.

Returns 0 on error (with an error message in $1).

Sample Usage

$Ssock = tcp.connect("::1", 3306);
if(! $sock) {
log.error("Error: " . $1);
}
See also: tcp.write, tcp.read, tcp.close

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 268 OF 275

() ZeUs

5.2.296

Read data from a previously

tcp.read(socket, maximum, [timeout])

opened TCP connection. The function waits until data is
available on the TCP socket, and will then return the available data (up to the specified
'maximum'). If an error occurs an empty string will be returned and $1 will contain an

error message, or 0 if the connection has been closed.

An optional timeout can be specified in milliseconds. If a no data has been read within this
time the function will return an empty string and $1 will be set to "timeout".

Note that if the Virtual Server connection times out before any data has been read then

the connection will terminated.

Sample Usage

Samount 1024;

Sbuf

’

while(string.len (

Sdata

tcp.read

if(Sdata == ""
Sbuf

’

break;
}

Sbuf .= S$data;

Read from a TCP socket, ensuring we get 1024 bytes

Sbuf)
($sock, S$amount -

Sbuf

) |

= Samount

))

string.len(

) |

See also:

tcp.connect, tcp.write, tcp.close

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 269 OF 275

() ZeUs

5.2.297 tcp.write(socket, data, [timeout])

Writes all of the supplied data to a TCP socket. The function will return the number of
bytes written. If an error occurs then -1 will be returned and $1 will contain error
message.

An optional timeout can be specified in milliseconds. After this time the number of bytes
written will be returned and $1 will contain 'timeout'.

Note that if the Virtual Server connection times out before the data has been written then
the connection will terminated.

Sample Usage

$sock = tcp.connect("10.100.1.5", 7);
tcp.write($sock, "Ping\n");

See also: tcp.connect, tep.read, tcp.close

5.2.298 xml.validate(document, DTD) - deprecated

This function has been deprecated. Use xml.validate.dtd instead.

Validates an XML document against a DTD. It returns 1 if the document validated
correctly, and 0 if it did not. It returns -1 if there was an error parsing the XML document
or the DTD.

The XML processing functionality must be enabled by the software license.

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 270 OF 275

() ZeUs

5.2.299 xml.validate.dtd(document,DTD)

Validates an XML document against a DTD. It returns 1 if the document validated
correctly, and O if it did not. It returns -1 if there was an error parsing the XML document
or the DTD.

The XML processing functionality must be enabled by the software license.

Sample Usage

Validate the HTTP body against the DTD stored in
the resource 'mydtd'

StheDoc = http.getBody(0);

$theDTD = resource.get ("mydtd");

if(xml.validate.dtd($theDoc, $theDTD) != 1) {

validation failed ...

See also: xml.validate.xsd

5.2.300 xml.validate.xsd(document, schema)

Validates an XML document against an XML schema. It returns 1 if the document validated
correctly, and 0 if it did not. It returns -1 if there was an error parsing the XML document
or the schema.
If the schema against which the document is being validated needs to import another
schema file, it will search for it inside Catalog > Extra Files > Miscellaneous Files.
The XML processing functionality must be enabled by the software license.

Sample Usage

Validate the HTTP body against the schema stored in
the resource 'myschema'

StheDoc = http.getBody(0);

StheSchema = resource.get("myschema");

if(xml.validate.xsd($theDoc, S$theSchema) != 1) {

validation failed ...

See also: xml.validate.dtd

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 271 OF 275

() ZeUs

5.2.301

xml.xpath.matchNodeCount(doc, nspace, query)

Applies an XPath query to an XML document (doc), using the namespaces provided in
nspace. It returns the number of entries in the result node set.

It returns -1 if there was an error parsing the XML document, XML namespace or XPath

query.

The XML processing functionality must be enabled by the software license.

Sample Usage

How many nodes are named 'search'?
Sr =

"//search");

xml .xpath.matchNodeCount (

StheDoc,

StheNs,

See also: xml.xpath.matchNodeSet

5.2.302

xml.xpath.matchNodeSet(doc, nspace, query)

Applies an XPath query to an XML document (doc), using the namespaces provided in
nspace. It returns a string representation of the result node set.

It returns the empty string if there was an error parsing the XML document, XML

namespace or XPath query.

The XML processing functionality must be enabled by the software license.

Sample Usage

What is the value of the 'search' node?
$s = xml.xpath.matchNodeSet ($theDoc, $theNS,
"//search/text ()");
See also: xml.xpath.matchNodeCount

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 272 OF 275

() ZeUs

5.2.303 xml.xslt.transform(document, stylesheet)

Performs an XSLT transformation on a XML document.
document, or -1 on failure.

It returns the transformed

The XML processing functionality must be enabled by the software license.

Sample Usage

Sresponse = xml.xslt.transform(http.getbody (
resource.get ("people.xsl"));
http.sendResponse ("200 OK", "text/html",

Sresponse, "");

Perform XSLT transformation on supplied POST XML
data, and return the HTML result to the client.

0),

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 273 OF 275

Further Resources

6.1

6.2

6.3

Zeus Manuals

Bundled with the software is a Getting Started Guide, intended to get you up and running
quickly with the software, and a more detailed User Guide. If you have purchased a Zeus
Appliance, you will also find a specific Appliance Quick-Start guide which you should read
before installing and configuring the appliance for the first time. There are also full
manuals for the TrafficScript rules language and the Zeus Control API.

You can access these manuals via the Help pages (described below), or download the
most recent versions from the Zeus KnowledgeHub at http://knowledgehub.zeus.com/..

Online Help

By clicking the Help button on any page of the Admin Server interface, you can see
detailed help information for that page. You can also view contents and index pages to
navigate around the online help.

You can access the User Guide and TrafficScript reference manual by clicking the Manuals

button on any of the Help pages.

The Rules > Edit page also has a link to TrafficScript Help, a quick reference guide to
the functions.

Information online
Product specifications can be found at:

http://www.zeus.com/products/

Visit Zeus KnowledgeHub for further documentation, examples, white papers and other
resources:

http://knowledgehub.zeus.com/

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE

PAGE 274 OF 275

http://knowledgehub.zeus.com/
http://www.zeus.com/products/UUT
http://knowledgehub.zeus.com/

() ZeUs

= ——— 7\.,_; e ——
— —— ,
Index
Function referencecovvvieieiiinnnnenens 57 Conditionalsccvvvviiiiiiiii 28
Main function typescocevvviiiiiiininnnns 57 Constants ...covieiiii 22
Further resources........cccvevviiiiiiininnnnnn, 268 Creating new subroutines..................... 37
local and global variables. 37
Headers . .
Escaping regular expressions................ 36
REWFItiNG v.vvvviiiii e 14
Examples...cooiiiiiiiii 16
Pools EXPressionsS...ocvviiiiiiiiii i 23
Session persistenceccoovvvviiiiiin, 18 FUNCEIONS ..o 35
ROULING WIth FUIES ..vvvveieeiviiee e eeenen, 14 Main function types.........cccceeniiiiiinnnnnn, 57
Rules Or;eraltors .. 3:
Application of RUIESccveiiiiniiinnnnen. 18 00 ean. ''''''''''''''''''''''''''''
) . ComMPariSON ...viieiieiiir e 25
Configure a virtual server to use a rule .. 20]
- . Mathematical.........ococviiiiiiiiiiiinnne, 24
Creating a rule in the catalog................ 19 .
. SEMNGS. e 25
Multiple requests and responses 38 .
OVEIVIEW it ienie e rnennnennennens 14
Request and responseccvvvvvnennne. 38 Stat ¢ 2
Use of Rules ... 18 atements ...oooviiiii
SYNLAX. e 22
Sample TrafficScript Rules...................... 42 TYPE CASES tuevvneiiiieeiiiee et e et e e eieeeans 27
Authenticating user access 46 Variables ...ocoveiiiiii 23
Customer Prioritization ... 43 WHILE 100D .. eeeeeeeeeeeeeee e e 29
Managing FTP connections.................... 50 Troubleshooti 53
Restricting Access Based on Time........ 42 rgt; elj 00 mgi >
Routing based on XML traffic 44 : EC ing syn Iax """"""""""""""""" o
Routing by Contentcovvvvviniininnenns 42 EDUGGING TUIES wovvererrerermrnmrmsesnereseene
Synchronizing request and responses 47 URL
ReWriting ...vovvviiiiiiiccic e 14
Service protection ewriting
Ru'es ___ 18 N ITUS S ottt teiiie ittt e eenasssennsssennassennnsreens 18
Session persistence Web KA 1 1111 18
Rule-based.....ccoovviiiiiiiiiiiiiiiiinenns 14, 18 Zeus Traffic Manager
State mach|ne _______________________________________ 40 OVerVieW ... 14
TrafficScript

ZEUS TRAFFICSCRIPT OVERVIEW AND REFERENCE
PAGE 275 OF 275

	Zeus TrafficScript Overview and Reference
	Copyright Notice
	Table of Contents
	1 Introduction
	1.1 Introducing Zeus Traffic Manager
	1.2 The TrafficScript language
	1.2.1 TrafficScript Examples

	1.3 Application of Rules
	1.4 Using a TrafficScript Rule
	1.4.1 Create a Rule in the Catalog
	1.4.2 Configure a Virtual Server to Use a Rule

	2 TrafficScript Syntax
	2.1 Statements
	2.2 Constants
	2.3 Variables
	2.4 Expressions
	2.4.1 Operators
	Mathematical
	String Concatenation
	Comparison
	Boolean
	Increment/Decrement
	Bitwise operators
	Precedence

	2.4.2 Type Casts in TrafficScript

	2.5 Conditionals
	2.6 Loops
	2.6.1 ‘for’ loops
	2.6.2 ‘while’ loops
	2.6.3 ‘do’ loops

	2.7 Other flow control
	2.8 Complex Data Types
	2.8.1 Arrays
	2.8.2 Hashes
	2.8.3 The global associative array
	Maintaining the array
	Example: An indexed array

	2.8.4 The connection-local array
	2.8.5 Libraries

	2.9 Functions
	2.10 Escaping Regular Expressions
	2.11 Creating new subroutines in TrafficScript
	2.11.1 Syntax
	Subroutine position and name restrictions
	Local variables
	$1 to $9 variables

	2.12 Request and Response rules
	2.12.1 Processing multiple requests and responses
	2.12.2 Specialized protocol handing functions
	Processing HTTP
	Other specialized protocols

	2.12.3 Processing other protocols

	2.13 The state machine in detail
	2.13.1 Controlling the state machine

	3 Sample TrafficScript Rules
	3.1 Routing by Content Type
	3.2 Restricting Access Based on the Time of Day
	3.3 Customer Prioritization
	3.4 Routing Based on XML Traffic
	3.4.1 Example: Google Search Request

	3.5 Authenticating User Access
	3.6 Synchronizing requests and responses
	3.7 Streaming HTTP responses
	3.8 Managing FTP connections

	4 Troubleshooting
	4.1 Overview
	4.2 Checking Syntax
	4.3 Debugging Rules
	4.4 Request and Response rules
	4.5 Special note about pool.use and pool.select

	5 Function Reference
	5.1 TrafficScript Core Functions
	5.1.1 array.append(array1, array2)
	Sample Usage

	5.1.2 array.contains(array, value)
	Sample Usage

	5.1.3 array.copy(array)
	Sample Usage

	5.1.4 array.create(size, [default])
	Sample Usage

	5.1.5 array.filter(array, pattern, [flags])
	Sample Usage

	5.1.6 array.join(array, [separator])
	Sample Usage

	5.1.7 array.length(array)
	Sample Usage

	5.1.8 array.pop(array)
	Sample Usage

	5.1.9 array.push(array, value)
	Sample Usage

	5.1.10 array.resize(array, size, [default])
	Sample Usage

	5.1.11 array.reverse(array)
	Sample Usage

	5.1.12 array.shift(array)
	Sample Usage

	5.1.13 array.sort(array, [reverse])
	Sample Usage

	5.1.14 array.sortNumerical(array, [reverse])
	Sample Usage

	5.1.15 array.splice(array, offset, length, [values])
	Sample Usage

	5.1.16 array.unshift(array, value)
	Sample Usage

	5.1.17 hash.contains(hash, key)
	Sample Usage

	5.1.18 hash.count(hash)
	Sample Usage

	5.1.19 hash.delete(hash)
	Sample Usage

	5.1.20 hash.empty(hash)
	Sample Usage

	5.1.21 hash.keys(hash)
	Sample Usage

	5.1.22 hash.values(hash)
	Sample Usage

	5.1.23 json.deserialize(json_string)
	Sample Usage

	5.1.24 json.serialize(object)
	Sample Usage

	5.1.25 lang.assert(condition, message)
	Sample Usage

	5.1.26 lang.chr(number)
	Sample Usage

	5.1.27 lang.dump(variable)
	Sample Usage

	5.1.28 lang.isarray(data)
	Sample Usage

	5.1.29 lang.ishash(data)
	Sample Usage

	5.1.30 lang.max(param1, param2)
	Sample Usage

	5.1.31 lang.min(param1, param2)
	Sample Usage

	5.1.32 lang.ord(string)
	Sample Usage

	5.1.33 lang.toArray(values)
	Sample Usage

	5.1.34 lang.toDouble(value)
	Sample Usage

	5.1.35 lang.toHash(values)
	Sample Usage

	5.1.36 lang.toInt(value)
	Sample Usage

	5.1.37 lang.toString(value)
	Sample Usage

	5.1.38 lang.tochar()
	Sample Usage

	5.1.39 lang.warn(message)
	Sample Usage

	5.1.40 math.acos(x)
	Sample Usage

	5.1.41 math.asin(x)
	Sample Usage

	5.1.42 math.atan(angle)
	Sample Usage

	5.1.43 math.ceil(value)
	Sample Usage

	5.1.44 math.cos(angle)
	Sample Usage

	5.1.45 math.exp(power)
	Sample Usage

	5.1.46 math.fabs(value)
	Sample Usage

	5.1.47 math.floor(value)
	Sample Usage

	5.1.48 math.ln(value)
	Sample Usage

	5.1.49 math.log(value)
	Sample Usage

	5.1.50 math.pow(num, power)
	Sample Usage

	5.1.51 math.random(range)
	Sample Usage

	5.1.52 math.rint(value)
	Sample Usage

	5.1.53 math.sin(angle)
	Sample Usage

	5.1.54 math.sqrt(num)
	Sample Usage

	5.1.55 math.tan(angle)
	Sample Usage

	5.1.56 string.BERToInt(string)
	Sample Usage

	5.1.57 string.Ireplace(string, search, replacement) - deprecated
	5.1.58 string.IreplaceAll(string, search, replacement) - deprecated
	5.1.59 string.append(str1, str2, ...)
	Sample Usage

	5.1.60 string.base64decode(string)
	Sample Usage

	5.1.61 string.base64encode(string)
	Sample Usage

	5.1.62 string.bytesToDotted(string)
	Sample Usage

	5.1.63 string.bytesToInt(string)
	Sample Usage

	5.1.64 string.cmp(str1, str2)
	Sample Usage

	5.1.65 string.contains(haystack, needle)
	Sample Usage

	5.1.66 string.containsI(haystack, needle)
	Sample Usage

	5.1.67 string.count(haystack, needle, [start])
	Sample Usage

	5.1.68 string.decrypt(string, passphrase)
	Sample Usage

	5.1.69 string.dottedToBytes(IP address)
	Sample Usage

	5.1.70 string.drop(string, count)
	Sample Usage

	5.1.71 string.encrypt(string, passphrase)
	Sample Usage

	5.1.72 string.endsWith(string, suffix)
	Sample Usage

	5.1.73 string.endsWithI(string, suffix)
	Sample Usage

	5.1.74 string.escape(string)
	Sample Usage

	5.1.75 string.extractHost(string)
	Sample Usage

	5.1.76 string.extractPort(string)
	Sample Usage

	5.1.77 string.find(haystack, needle, [start])
	Sample Usage

	5.1.78 string.findI(haystack, needle, [start])
	Sample Usage

	5.1.79 string.findr(haystack, needle, [distanceFromEndToStart])
	Sample Usage

	5.1.80 string.hash(string)
	Sample Usage

	5.1.81 string.hashMD5(string)
	Sample Usage

	5.1.82 string.hashSHA1(string)
	Sample Usage

	5.1.83 string.hashSHA256(string)
	Sample Usage

	5.1.84 string.hashSHA384(string)
	Sample Usage

	5.1.85 string.hashSHA512(string)
	Sample Usage

	5.1.86 string.hexToInt(string)
	Sample Usage

	5.1.87 string.hexdecode(encoded string)
	Sample Usage

	5.1.88 string.hexencode(string)
	Sample Usage

	5.1.89 string.htmldecode(encodedstring)
	Sample Usage

	5.1.90 string.htmlencode(string)
	Sample Usage

	5.1.91 string.icmp(str1, str2)
	Sample Usage

	5.1.92 string.insertBytes(string, insertion, offset)
	Sample Usage

	5.1.93 string.intToBER(number)
	Sample Usage

	5.1.94 string.intToBytes(number, [width])
	Sample Usage

	5.1.95 string.intToHex(string)
	Sample Usage

	5.1.96 string.ipmaskmatch(IP Address, CIDR IP Subnet)
	Sample Usage

	5.1.97 string.left(string, count)
	Sample Usage

	5.1.98 string.len(string)
	Sample Usage

	5.1.99 string.length(string)
	Sample Usage

	5.1.100 string.lowercase(string)
	Sample Usage

	5.1.101 string.normalizeIPAddress(string)
	Sample Usage

	5.1.102 string.randomBytes(length)
	Sample Usage

	5.1.103 string.regexescape(string)
	Sample Usage

	5.1.104 string.regexmatch(string, regex, [flags]))
	Sample Usage

	5.1.105 string.regexsub(string, regex, replacement, [flags])
	Sample Usage

	5.1.106 string.replace(string, search, replacement)
	Sample Usage

	5.1.107 string.replaceAll(string, search, replacement)
	Sample Usage

	5.1.108 string.replaceAllI(string, search, replacement)
	Sample Usage

	5.1.109 string.replaceBytes(string, replacement, offset)
	Sample Usage

	5.1.110 string.replaceI(string, search, replacement)
	Sample Usage

	5.1.111 string.reverse(string)
	Sample Usage

	5.1.112 string.right(string, count)
	Sample Usage

	5.1.113 string.skip(string, count)
	Sample Usage

	5.1.114 string.split(string, [separator])
	Sample Usage

	5.1.115 string.sprintf(format string, arguments)
	Sample Usage

	5.1.116 string.startsWith(string, prefix)
	Sample Usage

	5.1.117 string.startsWithI(string, prefix)
	Sample Usage

	5.1.118 string.substring(string, base, end)
	Sample Usage

	5.1.119 string.trim(string)
	Sample Usage

	5.1.120 string.unescape(escaped string)
	Sample Usage

	5.1.121 string.uppercase(string)
	Sample Usage

	5.1.122 string.urlencode(string)
	Sample Usage

	5.1.123 string.validIPAddress(string)
	Sample Usage

	5.1.124 string.wildmatch(string, pattern)
	Sample Usage

	5.1.125 string.gmtime.parse(str)
	Sample Usage

	5.1.126 sys.domainname()
	Sample Usage

	5.1.127 sys.getenv(variable)
	Sample Usage

	5.1.128 sys.getpid()
	Sample Usage

	5.1.129 sys.hostname()
	Sample Usage

	5.1.130 sys.time()
	Sample Usage

	5.1.131 sys.timeToString(unixtime)
	Sample Usage

	5.1.132 sys.gmtime.format(format, unixtime)
	Sample Usage

	5.1.133 sys.localtime.format(format, unixtime)
	Sample Usage

	5.1.134 sys.time.highres()
	Sample Usage

	5.1.135 sys.time.hour(unixtime)
	Sample Usage

	5.1.136 sys.time.minutes(unixtime)
	Sample Usage

	5.1.137 sys.time.month()
	Sample Usage

	5.1.138 sys.time.monthday(unixtime)
	Sample Usage

	5.1.139 sys.time.seconds(unixtime)
	Sample Usage

	5.1.140 sys.time.weekday(unixtime)
	Sample Usage

	5.1.141 sys.time.year(unixtime)
	Sample Usage

	5.1.142 sys.time.yearday(unixtime)
	Sample Usage

	5.2 Zeus Traffic Manager Functions
	5.2.1 connection.checkLimits([poolname])
	Sample Usage

	5.2.2 connection.close(Data, [Read])
	Sample Usage

	5.2.3 connection.discard()
	Sample Usage

	5.2.4 connection.getBandwidthClass() - deprecated
	5.2.5 connection.getData(count) - deprecated
	5.2.6 connection.getDataLen() - deprecated
	5.2.7 connection.getLine(offset) - deprecated
	5.2.8 connection.getLocalIP() - deprecated
	5.2.9 connection.getLocalPort() - deprecated
	5.2.10 connection.getMemoryUsage()
	Sample Usage

	5.2.11 connection.getNode()
	Sample Usage

	5.2.12 connection.getPersistence()
	Sample Usage

	5.2.13 connection.getPool()
	Sample Usage

	5.2.14 connection.getRemoteIP() - deprecated
	5.2.15 connection.getRemotePort() - deprecated
	5.2.16 connection.getServiceLevelClass()
	Sample Usage

	5.2.17 connection.getVirtualServer()
	Sample Usage

	5.2.18 connection.setBandwidthClass() - deprecated
	5.2.19 connection.setData(request data) - deprecated
	5.2.20 connection.setIdempotent(resend) - deprecated
	5.2.21 connection.setPersistence(name)
	Sample Usage

	5.2.22 connection.setPersistenceKey(value)
	Sample Usage

	5.2.23 connection.setPersistenceNode(value)
	Sample Usage

	5.2.24 connection.setServiceLevelClass()
	Sample Usage

	5.2.25 connection.sleep(milliseconds)
	Sample Usage

	5.2.26 connection.data.get(key)
	Sample Usage

	5.2.27 connection.data.set(key, value)
	Sample Usage

	5.2.28 counter.increment(counter, [amount])
	Sample Usage

	5.2.29 data.get(key)
	Sample Usage

	5.2.30 data.getMemoryFree()
	Sample Usage

	5.2.31 data.getMemoryUsage()
	Sample Usage

	5.2.32 data.remove(key)
	Sample Usage

	5.2.33 data.reset([prefix])
	Sample Usage

	5.2.34 data.set(key, value)
	Sample Usage

	5.2.35 event.emit(custom event name, message)
	Sample Usage

	5.2.36 geo.getCity(ip)
	Sample Usage

	5.2.37 geo.getCountry(ip)
	Sample Usage

	5.2.38 geo.getCountryCode(ip)
	Sample Usage

	5.2.39 geo.getDistanceKM(lat1, lon1, lat2, lon2)
	Sample Usage

	5.2.40 geo.getDistanceMiles(lat1, lon1, lat2, lon2)
	Sample Usage

	5.2.41 geo.getIPDistanceKM(ip1, ip2)
	Sample Usage

	5.2.42 geo.getIPDistanceMiles(ip1, ip2)
	Sample Usage

	5.2.43 geo.getLatitude(ip)
	Sample Usage

	5.2.44 geo.getLocation()
	Sample Usage

	5.2.45 geo.getLocationLonLat()
	Sample Usage

	5.2.46 geo.getLongitude(ip)
	Sample Usage

	5.2.47 geo.getRegion(ip)
	Sample Usage

	5.2.48 geo.getRegionCode(ip)
	Sample Usage

	5.2.49 http.addHeader(name, value)
	Sample Usage

	5.2.50 http.addResponseHeader(name, value)
	Sample Usage

	5.2.51 http.changeSite()
	Sample Usage

	5.2.52 http.cookie(name) - deprecated
	5.2.53 http.doesFormParamExist(Parameter)
	Sample Usage

	5.2.54 http.getBody([count])
	Sample Usage

	5.2.55 http.getBodyLines([count])
	Sample Usage

	5.2.56 http.getCookie(name)
	Sample Usage

	5.2.57 http.getCookies()
	Sample Usage

	5.2.58 http.getFormParam(Parameter, [Separator])
	Sample Usage

	5.2.59 http.getFormParamNames(Separator) - deprecated
	5.2.60 http.getFormParams()
	Sample Usage

	5.2.61 http.getHeader(name)
	Sample Usage

	5.2.62 http.getHeaderNames() - deprecated
	5.2.63 http.getHeaders()
	Sample Usage

	5.2.64 http.getHostHeader()
	Sample Usage

	5.2.65 http.getMethod()
	Sample Usage

	5.2.66 http.getMultipartAttachment(part)
	Sample Usage

	5.2.67 http.getPath()
	Sample Usage

	5.2.68 http.getQueryString()
	Sample Usage

	5.2.69 http.getRawQueryString()
	Sample Usage

	5.2.70 http.getRawURL()
	Sample Usage

	5.2.71 http.getRequest()
	Sample Usage

	5.2.72 http.getResponse()
	Sample Usage

	5.2.73 http.getResponseBody([count])
	Sample Usage

	5.2.74 http.getResponseBodyLines([count])
	Sample Usage

	5.2.75 http.getResponseCode()
	Sample Usage

	5.2.76 http.getResponseCookie(name)
	Sample Usage

	5.2.77 http.getResponseCookies()
	Sample Usage

	5.2.78 http.getResponseHeader(name)
	Sample Usage

	5.2.79 http.getResponseHeaderNames() - deprecated
	5.2.80 http.getResponseHeaders()
	Sample Usage

	5.2.81 http.getResponseVersion()
	Sample Usage

	5.2.82 http.getVersion()
	Sample Usage

	5.2.83 http.headerExists(name)
	Sample Usage

	5.2.84 http.listFormParamNames()
	Sample Usage

	5.2.85 http.listHeaderNames()
	Sample Usage

	5.2.86 http.listResponseHeaderNames()
	Sample Usage

	5.2.87 http.normalizePath(url)
	Sample Usage

	5.2.88 http.redirect()
	Sample Usage

	5.2.89 http.removeCookie(name)
	Sample Usage

	5.2.90 http.removeHeader(name)
	Sample Usage

	5.2.91 http.removeResponseCookie(name)
	Sample Usage

	5.2.92 http.removeResponseHeader(name)
	Sample Usage

	5.2.93 http.responseHeaderExists(name)
	Sample Usage

	5.2.94 http.scrubRequestHeaders(header1, header2, ...)
	Sample Usage

	5.2.95 http.scrubResponseHeaders(header1, header2, ...)
	Sample Usage

	5.2.96 http.sendResponse(code, type, body, headers)
	Sample Usage

	5.2.97 http.setBody(body)
	Sample Usage

	5.2.98 http.setCookie(name, value)
	Sample Usage

	5.2.99 http.setHeader(name, value)
	Sample Usage

	5.2.100 http.setIdempotent(resend)
	Sample Usage

	5.2.101 http.setMethod(method)
	Sample Usage

	5.2.102 http.setPath(url)
	Sample Usage

	5.2.103 http.setQueryString(querystring)
	Sample Usage

	5.2.104 http.setRawQueryString(querystring)
	Sample Usage

	5.2.105 http.setResponseBody(body, [transfer-encoding])
	Sample Usage

	5.2.106 http.setResponseCode(code, [message])
	Sample Usage

	5.2.107 http.setResponseCookie(name, value, [options])
	Sample Usage

	5.2.108 http.setResponseHeader(name, value)
	Sample Usage

	5.2.109 http.cache.disable()
	Sample Usage

	5.2.110 http.cache.enable()
	Sample Usage

	5.2.111 http.cache.exists([poolname])
	Sample Usage

	5.2.112 http.cache.respondIfCached([poolname])
	Sample Usage

	5.2.113 http.cache.setkey()
	Sample Usage

	5.2.114 http.compress.disable()
	Sample Usage

	5.2.115 http.compress.enable()
	Sample Usage

	5.2.116 http.request.get(url, [headers], [timeout])
	Sample Usage

	5.2.117 http.request.head(url, [headers], [timeout])
	Sample Usage

	5.2.118 http.request.post(url, POST data, [headers], [timeout])
	Sample Usage

	5.2.119 http.stream.continueFromBackend([data])
	Sample Usage

	5.2.120 http.stream.finishResponse([data])
	Sample Usage

	5.2.121 http.stream.readBulkResponse(count, [delimiter])
	Sample Usage

	5.2.122 http.stream.readResponse(count, [delimiter])
	Sample Usage

	5.2.123 http.stream.startResponse(resp_code, content_type, [content_length, headers])
	Sample Usage

	5.2.124 http.stream.writeResponse(data)
	Sample Usage

	5.2.125 java.run(Java Extension class name, [options])
	Sample Usage

	5.2.126 log.error(message)
	Sample Usage

	5.2.127 log.info(message)
	Sample Usage

	5.2.128 log.warn(message)
	Sample Usage

	5.2.129 net.dns.resolveHost(hostname)
	Sample Usage

	5.2.130 net.dns.resolveHost6(hostname)
	Sample Usage

	5.2.131 net.dns.resolveIP(IP address)
	Sample Usage

	5.2.132 pool.activenodes(Pool)
	Sample Usage

	5.2.133 pool.checknode(Pool, Host, Port)
	Sample Usage

	5.2.134 pool.select(Pool, [Host, Port])
	Sample Usage

	5.2.135 pool.use(Pool, [Host, Port])
	Sample Usage

	5.2.136 rate.getbacklog(class_name, [context])
	Sample Usage

	5.2.137 rate.use(class_name, [context])
	Sample Usage

	5.2.138 rate.use.noQueue(class_name, [context])
	Sample Usage

	5.2.139 request.avoidNode()
	Sample Usage

	5.2.140 request.endsAt(offset)
	Sample Usage

	5.2.141 request.endsWith(regex)
	Sample Usage

	5.2.142 request.get([count])
	Sample Usage

	5.2.143 request.getBandwidthClass()
	Sample Usage

	5.2.144 request.getDestIP()
	Sample Usage

	5.2.145 request.getDestPort()
	Sample Usage

	5.2.146 request.getLength()
	Sample Usage

	5.2.147 request.getLine([regex], [offset])
	Sample Usage

	5.2.148 request.getLocalIP()
	Sample Usage

	5.2.149 request.getLocalPort()
	Sample Usage

	5.2.150 request.getLogEnabled(enabled)
	Sample Usage

	5.2.151 request.getRemoteIP()
	Sample Usage

	5.2.152 request.getRemotePort()
	Sample Usage

	5.2.153 request.getRetries()
	Sample Usage

	5.2.154 request.getToS(Type of Service)
	Sample Usage

	5.2.155 request.isResendable()
	Sample Usage

	5.2.156 request.retry()
	Sample Usage

	5.2.157 request.sendResponse(Data)
	Sample Usage

	5.2.158 request.set(request data)
	Sample Usage

	5.2.159 request.setBandwidthClass(name)
	Sample Usage

	5.2.160 request.setIdempotent(resend)
	Sample Usage

	5.2.161 request.setLogEnabled(enabled)
	Sample Usage

	5.2.162 request.setRemoteIP()
	Sample Usage

	5.2.163 request.setToS(Type of Service)
	Sample Usage

	5.2.164 request.skip([count])
	Sample Usage

	5.2.165 resource.exists(filename)
	Sample Usage

	5.2.166 resource.get(filename)
	Sample Usage

	5.2.167 resource.getLines(filename)
	Sample Usage

	5.2.168 resource.getMD5(filename)
	Sample Usage

	5.2.169 resource.getMTime(filename)
	Sample Usage

	5.2.170 response.append(response data)
	Sample Usage

	5.2.171 response.close()
	Sample Usage

	5.2.172 response.flush(count)
	Sample Usage

	5.2.173 response.get([count])
	Sample Usage

	5.2.174 response.getBandwidthClass()
	Sample Usage

	5.2.175 response.getLength()
	Sample Usage

	5.2.176 response.getLine([regex], [offset])
	Sample Usage

	5.2.177 response.getLocalIP()
	Sample Usage

	5.2.178 response.getLocalPort()
	Sample Usage

	5.2.179 response.getRemoteIP()
	Sample Usage

	5.2.180 response.getRemotePort()
	Sample Usage

	5.2.181 response.getToS(Type of Service)
	Sample Usage

	5.2.182 response.set(response data)
	Sample Usage

	5.2.183 response.setBandwidthClass(name)
	Sample Usage

	5.2.184 response.setToS(Type of Service)
	Sample Usage

	5.2.185 rtsp.addRequestHeader(name, value)
	Sample Usage

	5.2.186 rtsp.addResponseHeader(name, value)
	Sample Usage

	5.2.187 rtsp.getMethod()
	Sample Usage

	5.2.188 rtsp.getPath()
	Sample Usage

	5.2.189 rtsp.getRawURL()
	Sample Usage

	5.2.190 rtsp.getRequest()
	Sample Usage

	5.2.191 rtsp.getRequestBody([count])
	Sample Usage

	5.2.192 rtsp.getRequestBodyLines(count)
	Sample Usage

	5.2.193 rtsp.getRequestHeader(name)
	Sample Usage

	5.2.194 rtsp.getRequestHeaderNames() - deprecated
	5.2.195 rtsp.getRequestHeaders()
	Sample Usage

	5.2.196 rtsp.getResponse()
	Sample Usage

	5.2.197 rtsp.getResponseBody([count])
	Sample Usage

	5.2.198 rtsp.getResponseBodyLines(count)
	Sample Usage

	5.2.199 rtsp.getResponseCode()
	Sample Usage

	5.2.200 rtsp.getResponseHeader(name)
	Sample Usage

	5.2.201 rtsp.getResponseHeaderNames() - deprecated
	5.2.202 rtsp.getResponseHeaders()
	Sample Usage

	5.2.203 rtsp.getVersion()
	Sample Usage

	5.2.204 rtsp.listRequestHeaderNames()
	Sample Usage

	5.2.205 rtsp.listResponseHeaderNames()
	Sample Usage

	5.2.206 rtsp.redirect(path)
	Sample Usage

	5.2.207 rtsp.removeRequestHeader(name)
	Sample Usage

	5.2.208 rtsp.removeResponseHeader(name)
	Sample Usage

	5.2.209 rtsp.requestHeaderExists(names)
	Sample Usage

	5.2.210 rtsp.responseHeaderExists(name)
	Sample Usage

	5.2.211 rtsp.sendResponse(code, body, headers)
	Sample Usage

	5.2.212 rtsp.setMethod(method)
	Sample Usage

	5.2.213 rtsp.setPath(url)
	Sample Usage

	5.2.214 rtsp.setRequestBody(body)
	Sample Usage

	5.2.215 rtsp.setRequestHeader(name, value)
	Sample Usage

	5.2.216 rtsp.setResponseBody(body)
	Sample Usage

	5.2.217 rtsp.setResponseCode(code, [message])
	Sample Usage

	5.2.218 rtsp.setResponseHeader(name, value)
	Sample Usage

	5.2.219 rule.getName()
	Sample Usage

	5.2.220 rule.getState()
	Sample Usage

	5.2.221 sip.addRequestHeader(name, value, at_top)
	Sample Usage

	5.2.222 sip.addResponseHeader(name, value, at_top)
	Sample Usage

	5.2.223 sip.getMethod()
	Sample Usage

	5.2.224 sip.getRequest()
	Sample Usage

	5.2.225 sip.getRequestBody()
	Sample Usage

	5.2.226 sip.getRequestBodyLines()
	Sample Usage

	5.2.227 sip.getRequestHeader(name)
	Sample Usage

	5.2.228 sip.getRequestHeaderNames() - deprecated
	5.2.229 sip.getRequestHeaders()
	Sample Usage

	5.2.230 sip.getRequestURI()
	Sample Usage

	5.2.231 sip.getResponse()
	Sample Usage

	5.2.232 sip.getResponseBody()
	Sample Usage

	5.2.233 sip.getResponseBodyLines()
	Sample Usage

	5.2.234 sip.getResponseCode()
	Sample Usage

	5.2.235 sip.getResponseHeader(name)
	Sample Usage

	5.2.236 sip.getResponseHeaderNames() - deprecated
	5.2.237 sip.getResponseHeaders()
	Sample Usage

	5.2.238 sip.getVersion()
	Sample Usage

	5.2.239 sip.listRequestHeaderNames()
	Sample Usage

	5.2.240 sip.listResponseHeaderNames()
	Sample Usage

	5.2.241 sip.redirect(contact)
	Sample Usage

	5.2.242 sip.removeRequestHeader(name)
	Sample Usage

	5.2.243 sip.removeResponseHeader(name)
	Sample Usage

	5.2.244 sip.requestHeaderExists(name)
	Sample Usage

	5.2.245 sip.responseHeaderExists(name)
	Sample Usage

	5.2.246 sip.sendResponse(code, reason, [headers], [body])
	Sample Usage

	5.2.247 sip.setMethod(method)
	Sample Usage

	5.2.248 sip.setRequestBody(body)
	Sample Usage

	5.2.249 sip.setRequestHeader(name, value)
	Sample Usage

	5.2.250 sip.setRequestURI(uri)
	Sample Usage

	5.2.251 sip.setResponseBody(body)
	Sample Usage

	5.2.252 sip.setResponseCode(code, [message])
	Sample Usage

	5.2.253 sip.setResponseHeader(name, value)
	Sample Usage

	5.2.254 slm.conforming([class name])
	Sample Usage

	5.2.255 slm.isOK([class_name])
	Sample Usage

	5.2.256 slm.threshold([class_name])
	Sample Usage

	5.2.257 ssl.clientCert()
	Sample Usage

	5.2.258 ssl.clientCertAlgorithm()
	Sample Usage

	5.2.259 ssl.clientCertChain()
	Sample Usage

	5.2.260 ssl.clientCertEndDate()
	Sample Usage

	5.2.261 ssl.clientCertHash()
	Sample Usage

	5.2.262 ssl.clientCertIssuer()
	Sample Usage

	5.2.263 ssl.clientCertPublicKey()
	Sample Usage

	5.2.264 ssl.clientCertSerial()
	Sample Usage

	5.2.265 ssl.clientCertSerialDec()
	Sample Usage

	5.2.266 ssl.clientCertStartDate()
	Sample Usage

	5.2.267 ssl.clientCertStatus()
	Sample Usage

	5.2.268 ssl.clientCertSubject()
	Sample Usage

	5.2.269 ssl.clientCertVersion()
	Sample Usage

	5.2.270 ssl.clientCipher()
	Sample Usage

	5.2.271 ssl.clientSupportsSecureRenegotiation()
	Sample Usage

	5.2.272 ssl.getClientCloseAlert()
	Sample Usage

	5.2.273 ssl.getServerCloseAlert()
	Sample Usage

	5.2.274 ssl.getTLSServerName()
	Sample Usage

	5.2.275 ssl.isSSL()
	Sample Usage

	5.2.276 ssl.requireCert()
	Sample Usage

	5.2.277 ssl.serverCert()
	Sample Usage

	5.2.278 ssl.serverCertAlgorithm()
	Sample Usage

	5.2.279 ssl.serverCertCommonName()
	Sample Usage

	5.2.280 ssl.serverCertEndDate()
	Sample Usage

	5.2.281 ssl.serverCertHash()
	Sample Usage

	5.2.282 ssl.serverCertIssuer()
	Sample Usage

	5.2.283 ssl.serverCertName()
	Sample Usage

	5.2.284 ssl.serverCertPublicKey()
	Sample Usage

	5.2.285 ssl.serverCertSerial()
	Sample Usage

	5.2.286 ssl.serverCertStartDate()
	Sample Usage

	5.2.287 ssl.serverCertSubject()
	Sample Usage

	5.2.288 ssl.serverCertVersion()
	Sample Usage

	5.2.289 ssl.serverSiteName()
	Sample Usage

	5.2.290 ssl.setClientCloseAlert(alertflag)
	Sample Usage

	5.2.291 ssl.setServerCloseAlert(alertflag)
	Sample Usage

	5.2.292 ssl.setTLSServerName(servername)
	Sample Usage

	5.2.293 ssl.sslSessionID()
	Sample Usage

	5.2.294 tcp.close(sock)
	Sample Usage

	5.2.295 tcp.connect(ip, port, [timeout])
	Sample Usage

	5.2.296 tcp.read(socket, maximum, [timeout])
	Sample Usage

	5.2.297 tcp.write(socket, data, [timeout])
	Sample Usage

	5.2.298 xml.validate(document, DTD) - deprecated
	5.2.299 xml.validate.dtd(document, DTD)
	Sample Usage

	5.2.300 xml.validate.xsd(document, schema)
	Sample Usage

	5.2.301 xml.xpath.matchNodeCount(doc, nspace, query)
	Sample Usage

	5.2.302 xml.xpath.matchNodeSet(doc, nspace, query)
	Sample Usage

	5.2.303 xml.xslt.transform(document, stylesheet)
	Sample Usage

	6 Further Resources
	6.1 Zeus Manuals
	6.2 Online Help
	6.3 Information online

	7 Index

